File size: 5,720 Bytes
b87d4ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python

# pip install transformers datasets torch soundfile jiwer

from datasets import load_dataset, Audio
from transformers import pipeline, WhisperProcessor
from torch.utils.data import DataLoader
import torch
from jiwer import wer as jiwer_wer
from jiwer import cer as jiwer_cer
import ipdb
import subprocess
import os

# 1. Load FLEURS Burmese test set, cast to 16 kHz audio
ds = load_dataset("google/fleurs", "ceb_ph", split="test")
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))

from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "openai/whisper-large-v3"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
whisper_model = "openai/whisper-large-v3"
processor = WhisperProcessor.from_pretrained(whisper_model)

asr = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    torch_dtype=torch_dtype,
    chunk_length_s=30,
    batch_size=64,
    max_new_tokens=225,
    device=device,
    num_beams=1,                   # Use beam search for better quality
)
generate_kwargs = {
    "condition_on_prev_tokens": False,
    "compression_ratio_threshold": 1.35,  # zlib compression ratio threshold (in token space)
    "temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
    "logprob_threshold": -1.0,
    "language": "tagalog",
}


# 3. Batch‐wise transcription function
def transcribe_batch(batch):
    # `batch["audio"]` is a list of {"array": np.ndarray, ...}
    inputs = [ ex["array"] for ex in batch["audio"] ]
    outputs = asr(inputs, generate_kwargs=generate_kwargs)  # returns a list of dicts with "text"
    # lower-case and strip to normalize for CER
    preds = [ out["text"].lower().strip() for out in outputs ]
    return {"prediction": preds}

# 4. Map over the dataset in chunks of, say, 32 examples at a time
result = ds.map(
    transcribe_batch,
    batched=True,
    batch_size=32,              # feed 32 audios → pipeline will sub-batch into 8s
    remove_columns=ds.column_names
)

# ipdb.set_trace()
# 5. Compute corpus-level CER with jiwer
# refs = "\n".join(t.lower().strip() for t in ds["transcription"])
# preds = "\n".join(t for t in result["prediction"])
# score = jiwer_cer(refs, preds)
ids = [key for key in ds["id"]]
refs = [t.lower().strip() for t in ds["transcription"]]
preds = [t for t in result["prediction"]]
score_cer = jiwer_cer(refs, preds)
score_wer = jiwer_wer(refs, preds)

print(f"CER on FLEURS ceb_ph: {score_cer*100:.2f}%")
print(f"WER on FLEURS ceb_ph: {score_wer*100:.2f}%")

# Function to add spaces between characters for CER calculation
def add_char_spaces(text):
    """Add spaces between each character for character-level evaluation"""
    return ' '.join(list(text.strip()))

with open("./ceb_ph_zs_lid_tag.pred", "w") as pred_results:
    for key, pred in zip(ids, preds):
        # pred_with_spaces = add_char_spaces(pred)
        pred_results.write("{} {}\n".format(key, pred))

with open("./ceb_ph.ref", "w") as ref_results:
    for key, ref in zip(ids, refs):
        # ref_with_spaces = add_char_spaces(ref)
        ref_results.write("{} {}\n".format(key, ref))

# Generate WER file using compute-wer.py
print("Generating detailed WER analysis...")

# Check if compute-wer.py exists
compute_wer_script = "./compute-wer.py"
if not os.path.exists(compute_wer_script):
    # Try to find it in parent directories or common locations
    possible_locations = [
        "./compute-wer.py",
    ]
    for location in possible_locations:
        if os.path.exists(location):
            compute_wer_script = location
            break
    else:
        print(f"Warning: compute-wer.py not found. Tried: {[compute_wer_script] + possible_locations}")
        print("Skipping detailed WER analysis.")
        compute_wer_script = None

if compute_wer_script:
    try:
        # Run compute-wer.py with character-level analysis
        ref_file = "./ceb_ph.ref"
        hyp_file = "./ceb_ph_zs_lid_tag.pred"
        wer_file = "./ceb_ph_zs_lid_tag.wer"

        cmd = [
            "python", compute_wer_script,
            "--char=1",  # Character-level analysis
            "--v=1",     # Verbose output
            ref_file,
            hyp_file
        ]
        
        print(f"Running: {' '.join(cmd)} > {wer_file}")
        
        # Run the command and redirect output to wer file
        with open(wer_file, "w") as wer_output:
            result = subprocess.run(
                cmd,
                stdout=wer_output,
                stderr=subprocess.PIPE,
                text=True,
                check=True
            )
        
        print(f"CER analysis saved to {wer_file}")
        
        # Optionally, print the first few lines of the WER file
        if os.path.exists(wer_file):
            print("\nFirst few lines of WER analysis:")
            with open(wer_file, "r") as f:
                lines = f.readlines()
                for i, line in enumerate(lines[:10]):  # Show first 10 lines
                    print(f"  {line.rstrip()}")
                if len(lines) > 10:
                    print(f"  ... ({len(lines) - 10} more lines)")
        
    except subprocess.CalledProcessError as e:
        print(f"Error running compute-wer.py: {e}")
        if e.stderr:
            print(f"Error details: {e.stderr}")
    except Exception as e:
        print(f"Unexpected error: {e}")

print("Inference and CER analysis completed!")