pengyizhou's picture
update inference results
b87d4ca
#!/usr/bin/env python
# pip install transformers datasets torch soundfile jiwer
from datasets import load_dataset, Audio
from transformers import pipeline, WhisperProcessor
from torch.utils.data import DataLoader
import torch
from jiwer import wer as jiwer_wer
from jiwer import cer as jiwer_cer
import ipdb
import subprocess
import os
# 1. Load FLEURS Burmese test set, cast to 16 kHz audio
ds = load_dataset("google/fleurs", "ceb_ph", split="test", trust_remote_code=True)
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "/home/peng.yizhou/ANPASSEN/whisper-fleurs-ceb_ph-small/whisper-fleurs-ceb_ph-small-tagalog-lid"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
whisper_model = "openai/whisper-large-v3"
processor = WhisperProcessor.from_pretrained(whisper_model)
asr = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
chunk_length_s=30,
batch_size=64,
max_new_tokens=228,
device=device,
num_beams=1, # Use beam search for better quality
do_sample=False, # Disable sampling for deterministic output
early_stopping=False, # Stop when sufficient beams are complete
)
# 3. Batch‐wise transcription function
def transcribe_batch(batch):
# `batch["audio"]` is a list of {"array": np.ndarray, ...}
inputs = [ ex["array"] for ex in batch["audio"] ]
outputs = asr(inputs) # returns a list of dicts with "text"
# lower-case and strip to normalize for CER
preds = [ out["text"].lower().strip() for out in outputs ]
return {"prediction": preds}
# 4. Map over the dataset in chunks of, say, 32 examples at a time
result = ds.map(
transcribe_batch,
batched=True,
batch_size=64, # feed 32 audios → pipeline will sub-batch into 8s
remove_columns=ds.column_names
)
# ipdb.set_trace()
# 5. Compute corpus-level CER with jiwer
# refs = "\n".join(t.lower().strip() for t in ds["transcription"])
# preds = "\n".join(t for t in result["prediction"])
# score = jiwer_cer(refs, preds)
ids = [key for key in ds["id"]]
refs = [t.lower().strip() for t in ds["transcription"]]
preds = [t for t in result["prediction"]]
score_cer = jiwer_cer(refs, preds)
score_wer = jiwer_wer(refs, preds)
print(f"CER on FLEURS ceb_ph: {score_cer*100:.2f}%")
print(f"WER on FLEURS ceb_ph: {score_wer*100:.2f}%")
with open("./ceb_ph_finetune.pred", "w") as pred_results:
for key, pred in zip(ids, preds):
pred_results.write("{} {}\n".format(key, pred))
with open("./ceb_ph.ref", "w") as ref_results:
for key, ref in zip(ids, refs):
ref_results.write("{} {}\n".format(key, ref))
# Generate WER file using compute-wer.py
print("Generating detailed WER analysis...")
# Check if compute-wer.py exists
compute_wer_script = "./compute-wer.py"
if not os.path.exists(compute_wer_script):
# Try to find it in parent directories or common locations
possible_locations = [
"./compute-wer.py",
]
for location in possible_locations:
if os.path.exists(location):
compute_wer_script = location
break
else:
print(f"Warning: compute-wer.py not found. Tried: {[compute_wer_script] + possible_locations}")
print("Skipping detailed WER analysis.")
compute_wer_script = None
if compute_wer_script:
try:
# Run compute-wer.py with character-level analysis
ref_file = "./ceb_ph.ref"
hyp_file = "./ceb_ph_finetune.pred"
wer_file = "./ceb_ph.wer"
cmd = [
"python", compute_wer_script,
"--char=1", # Character-level analysis
"--v=1", # Verbose output
ref_file,
hyp_file
]
print(f"Running: {' '.join(cmd)} > {wer_file}")
# Run the command and redirect output to wer file
with open(wer_file, "w") as wer_output:
result = subprocess.run(
cmd,
stdout=wer_output,
stderr=subprocess.PIPE,
text=True,
check=True
)
print(f"WER analysis saved to {wer_file}")
# Optionally, print the first few lines of the WER file
if os.path.exists(wer_file):
print("\nFirst few lines of WER analysis:")
with open(wer_file, "r") as f:
lines = f.readlines()
for i, line in enumerate(lines[:10]): # Show first 10 lines
print(f" {line.rstrip()}")
if len(lines) > 10:
print(f" ... ({len(lines) - 10} more lines)")
except subprocess.CalledProcessError as e:
print(f"Error running compute-wer.py: {e}")
if e.stderr:
print(f"Error details: {e.stderr}")
except Exception as e:
print(f"Unexpected error: {e}")
print("Inference and WER analysis completed!")