Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-3.0
|
| 3 |
+
datasets:
|
| 4 |
+
- google/fleurs
|
| 5 |
+
metrics:
|
| 6 |
+
- wer
|
| 7 |
+
base_model:
|
| 8 |
+
- openai/whisper-large-v3
|
| 9 |
+
pipeline_tag: automatic-speech-recognition
|
| 10 |
+
---
|
| 11 |
+
# Whisper Fine-tuning for Cebuano Language
|
| 12 |
+
|
| 13 |
+
This project provides a configurable way to fine-tune OpenAI's Whisper model specifically on the Cebuano language using the Google FLEURS dataset (ceb_ph).
|
| 14 |
+
|
| 15 |
+
## Features
|
| 16 |
+
|
| 17 |
+
- **Flexible Configuration**: All parameters are configurable through YAML files
|
| 18 |
+
- **Multi-GPU Support**: Automatic detection and support for multiple GPUs
|
| 19 |
+
- **Dynamic Language Selection**: Train on any subset of supported languages
|
| 20 |
+
- **On-the-fly Processing**: Efficient memory usage with dynamic audio preprocessing
|
| 21 |
+
- **Comprehensive Evaluation**: Automatic evaluation on test sets
|
| 22 |
+
|
| 23 |
+
## Configuration
|
| 24 |
+
|
| 25 |
+
All parameters are configurable through the `config.yaml` file. This configuration is specifically set up for Cebuano language training using the Google FLEURS dataset.
|
| 26 |
+
|
| 27 |
+
### Model Configuration
|
| 28 |
+
- Model checkpoint (default: `openai/whisper-large-v3`)
|
| 29 |
+
- Maximum target length for sequences
|
| 30 |
+
|
| 31 |
+
### Dataset Configuration
|
| 32 |
+
- Uses Google FLEURS Cebuano (ceb_ph) dataset
|
| 33 |
+
- Dataset sources and splits
|
| 34 |
+
- Language-specific settings
|
| 35 |
+
- Training subset ratio (25% of data for faster training)
|
| 36 |
+
|
| 37 |
+
### Training Configuration
|
| 38 |
+
- Learning rate, batch sizes, training steps
|
| 39 |
+
- Multi-GPU vs single GPU settings
|
| 40 |
+
- Evaluation and logging parameters
|
| 41 |
+
|
| 42 |
+
### Environment Configuration
|
| 43 |
+
- CPU core limits
|
| 44 |
+
- Environment variables for optimization
|
| 45 |
+
|
| 46 |
+
### Pushing to Hub
|
| 47 |
+
- I have set the configuration to not push to the Hugging Face Hub by default. You can enable this by setting `push_to_hub: true` in your config file.
|
| 48 |
+
|
| 49 |
+
## Usage
|
| 50 |
+
|
| 51 |
+
### Basic Usage
|
| 52 |
+
```bash
|
| 53 |
+
python finetune.py --config config.yaml
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
### Custom Configuration
|
| 57 |
+
```bash
|
| 58 |
+
python finetune.py --config my_custom_config.yaml
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
### Multi-GPU Training
|
| 62 |
+
Since we only have very few training data (around 2.5 hours), multi-GPU training is not recommended.
|
| 63 |
+
|
| 64 |
+
## Configuration File Structure
|
| 65 |
+
|
| 66 |
+
The `config.yaml` file is organized into the following sections:
|
| 67 |
+
|
| 68 |
+
1. **model**: Model checkpoint and sequence length settings
|
| 69 |
+
2. **output**: Output directory configuration
|
| 70 |
+
3. **environment**: Environment variables and CPU settings
|
| 71 |
+
4. **audio**: Audio processing settings (sampling rate)
|
| 72 |
+
5. **languages**: Cebuano language configuration
|
| 73 |
+
6. **datasets**: Google FLEURS Cebuano dataset configuration
|
| 74 |
+
7. **training**: All training hyperparameters
|
| 75 |
+
8. **data_processing**: Data processing settings
|
| 76 |
+
|
| 77 |
+
## Customizing Your Training
|
| 78 |
+
|
| 79 |
+
### Adjusting Training Parameters
|
| 80 |
+
Modify the `training` section in `config.yaml`:
|
| 81 |
+
- Change learning rate, batch sizes, or training steps
|
| 82 |
+
- Adjust evaluation frequency
|
| 83 |
+
- Configure multi-GPU settings
|
| 84 |
+
|
| 85 |
+
### Environment Optimization
|
| 86 |
+
Adjust the `environment` section to optimize for your system:
|
| 87 |
+
- Set CPU core limits
|
| 88 |
+
- Configure memory usage settings
|
| 89 |
+
|
| 90 |
+
## Configuration
|
| 91 |
+
|
| 92 |
+
The provided `config.yaml` is specifically configured for Cebuano language training using the Google FLEURS dataset.
|
| 93 |
+
|
| 94 |
+
## Training Commands
|
| 95 |
+
|
| 96 |
+
### Basic Training
|
| 97 |
+
```bash
|
| 98 |
+
python finetune.py
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
### Single GPU Training
|
| 102 |
+
```bash
|
| 103 |
+
python finetune.py
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
## Inference Guide
|
| 107 |
+
|
| 108 |
+
After training your model, you can use the provided `inference.py` script for speech recognition:
|
| 109 |
+
|
| 110 |
+
```bash
|
| 111 |
+
python inference.py
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
The inference script includes:
|
| 115 |
+
- Model loading from the trained checkpoint
|
| 116 |
+
- Audio preprocessing pipeline
|
| 117 |
+
- Text generation with proper formatting
|
| 118 |
+
- Support for Cebuano language transcription
|
| 119 |
+
|
| 120 |
+
### Using the Trained Model
|
| 121 |
+
|
| 122 |
+
The inference script automatically handles:
|
| 123 |
+
- Loading the fine-tuned model weights
|
| 124 |
+
- Audio preprocessing with proper sampling rate
|
| 125 |
+
- Generating transcriptions for Cebuano speech
|
| 126 |
+
- Output formatting for evaluation metrics
|
| 127 |
+
|
| 128 |
+
## Dependencies
|
| 129 |
+
|
| 130 |
+
Install required packages:
|
| 131 |
+
```bash
|
| 132 |
+
pip install -r requirements.txt
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
Key dependencies:
|
| 136 |
+
- PyYAML (for configuration loading)
|
| 137 |
+
- torch, transformers, datasets
|
| 138 |
+
- librosa (for audio processing)
|
| 139 |
+
- evaluate (for metrics)
|
| 140 |
+
|
| 141 |
+
## Evaluation Results
|
| 142 |
+
| Language | Metric | Error Rate | Zero Shot |
|
| 143 |
+
|-------------|:------:|-----------:|-----------:|
|
| 144 |
+
| Cebuano | WER | 16.10% | 47.33% |
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
**Note**: If you encounter issues running finetune.py, you can use the `finetune-backup.py` file which contains the original hardcoded configuration.
|