Commit
·
73a3144
1
Parent(s):
3ba76d4
update inference
Browse files- README.md +8 -1
- config.yaml +8 -3
- finetune.py +120 -16
- inference.py +3 -4
- inference/compute-wer.py +565 -0
- inference/inference-finetune-lid.py +168 -0
- inference/inference-finetune-nolid.py +167 -0
- inference/inference-ft.sh +4 -0
- inference/inference-zeroshot-nolid.py +164 -0
- inference/inference-zeroshot.py +165 -0
- inference/inference-zs.sh +5 -0
- inference/km_kh.ref +0 -0
- inference/km_kh_finetune.pred +0 -0
- inference/km_kh_finetune.wer +0 -0
- inference/km_kh_finetune_nolid.pred +0 -0
- inference/km_kh_finetune_nolid.wer +0 -0
- inference/km_kh_zs_lid.pred +0 -0
- inference/km_kh_zs_lid.wer +0 -0
- inference/km_kh_zs_nolid.pred +0 -0
- inference/km_kh_zs_nolid.wer +0 -0
README.md
CHANGED
|
@@ -140,10 +140,17 @@ Key dependencies:
|
|
| 140 |
- librosa (for audio processing)
|
| 141 |
- evaluate (for metrics)
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
## Evaluation Results
|
| 144 |
| Language | Metric | Error Rate |
|
| 145 |
|-------------|:------:|-----------:|
|
| 146 |
-
| Khmer | CER |
|
|
|
|
| 147 |
|
| 148 |
|
| 149 |
|
|
|
|
| 140 |
- librosa (for audio processing)
|
| 141 |
- evaluate (for metrics)
|
| 142 |
|
| 143 |
+
## Zero-shot Results
|
| 144 |
+
| LID | Metric | Error Rate |
|
| 145 |
+
|-------------|:------:|-----------:|
|
| 146 |
+
| Khmer | CER | 86.77% |
|
| 147 |
+
| Auto | CER | 86.39% |
|
| 148 |
+
|
| 149 |
## Evaluation Results
|
| 150 |
| Language | Metric | Error Rate |
|
| 151 |
|-------------|:------:|-----------:|
|
| 152 |
+
| Khmer | CER | 55.66% |
|
| 153 |
+
| Auto | CER | 55.77% |
|
| 154 |
|
| 155 |
|
| 156 |
|
config.yaml
CHANGED
|
@@ -4,11 +4,11 @@
|
|
| 4 |
# Model Configuration
|
| 5 |
model:
|
| 6 |
checkpoint: "openai/whisper-large-v3"
|
| 7 |
-
max_target_length:
|
| 8 |
|
| 9 |
# Output Configuration
|
| 10 |
output:
|
| 11 |
-
output_dir: "./whisper-fleurs-km_kh-small"
|
| 12 |
|
| 13 |
# Environment Configuration
|
| 14 |
environment:
|
|
@@ -60,6 +60,10 @@ training:
|
|
| 60 |
per_device_eval_batch_size: 16
|
| 61 |
gradient_accumulation_steps: 1
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
# Optimization settings
|
| 65 |
gradient_checkpointing: true
|
|
@@ -86,7 +90,8 @@ training:
|
|
| 86 |
- "tensorboard"
|
| 87 |
|
| 88 |
# Hub settings
|
| 89 |
-
push_to_hub:
|
|
|
|
| 90 |
|
| 91 |
# Multi-GPU specific settings
|
| 92 |
dataloader_drop_last: true
|
|
|
|
| 4 |
# Model Configuration
|
| 5 |
model:
|
| 6 |
checkpoint: "openai/whisper-large-v3"
|
| 7 |
+
max_target_length: 446
|
| 8 |
|
| 9 |
# Output Configuration
|
| 10 |
output:
|
| 11 |
+
output_dir: "./ft-lid-whisper-fleurs-km_kh-small"
|
| 12 |
|
| 13 |
# Environment Configuration
|
| 14 |
environment:
|
|
|
|
| 60 |
per_device_eval_batch_size: 16
|
| 61 |
gradient_accumulation_steps: 1
|
| 62 |
|
| 63 |
+
multi_gpu:
|
| 64 |
+
per_device_train_batch_size: 4
|
| 65 |
+
per_device_eval_batch_size: 4
|
| 66 |
+
gradient_accumulation_steps: 1
|
| 67 |
|
| 68 |
# Optimization settings
|
| 69 |
gradient_checkpointing: true
|
|
|
|
| 90 |
- "tensorboard"
|
| 91 |
|
| 92 |
# Hub settings
|
| 93 |
+
push_to_hub: true
|
| 94 |
+
hub_private_repo: false # Not pushing to a private repo for Khmer
|
| 95 |
|
| 96 |
# Multi-GPU specific settings
|
| 97 |
dataloader_drop_last: true
|
finetune.py
CHANGED
|
@@ -47,6 +47,7 @@ import io
|
|
| 47 |
import yaml
|
| 48 |
import argparse
|
| 49 |
from itertools import chain
|
|
|
|
| 50 |
|
| 51 |
# Load configuration from YAML file
|
| 52 |
def load_config(config_path):
|
|
@@ -132,6 +133,19 @@ class WhisperOnTheFlyDataset(TorchDataset):
|
|
| 132 |
else: # english, chinese
|
| 133 |
text = item["text"]
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
# Tokenize with appropriate processor
|
| 136 |
if lang == "cebuano":
|
| 137 |
labels = self.processors["cebuano"].tokenizer(
|
|
@@ -177,7 +191,8 @@ class WhisperOnTheFlyDataset(TorchDataset):
|
|
| 177 |
return {
|
| 178 |
"input_features": inputs.input_features.squeeze(0),
|
| 179 |
"labels": labels.input_ids.squeeze(0),
|
| 180 |
-
"language": lang
|
|
|
|
| 181 |
}
|
| 182 |
|
| 183 |
def _process_audio(self, audio_sample):
|
|
@@ -216,16 +231,53 @@ class DataCollatorSpeechSeq2SeqWithPadding:
|
|
| 216 |
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
| 217 |
# pad the labels to max length
|
| 218 |
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
-
#
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
# if bos token is appended in previous tokenization step,
|
| 224 |
# cut bos token here as it's append later anyways
|
| 225 |
-
if (
|
| 226 |
-
|
| 227 |
|
| 228 |
-
batch["labels"] =
|
|
|
|
| 229 |
|
| 230 |
return batch
|
| 231 |
|
|
@@ -300,9 +352,9 @@ def load_chinese_dataset(dataset_config):
|
|
| 300 |
"""Load Chinese dataset with multiple test splits"""
|
| 301 |
print("Loading Chinese...")
|
| 302 |
wenet_train = load_dataset(dataset_config['train_dataset'], streaming=dataset_config['streaming'])
|
| 303 |
-
wenet_valid = load_dataset(dataset_config['validation_dataset'], dataset_config['validation_config'], split="validation", streaming=dataset_config['streaming'])
|
| 304 |
-
wenet_testnet = load_dataset(dataset_config['test_net_dataset'], dataset_config['test_net_config'], split="test", streaming=dataset_config['streaming'])
|
| 305 |
-
wenet_testmeeting = load_dataset(dataset_config['test_meeting_dataset'], dataset_config['test_meeting_config'], split="test", streaming=dataset_config['streaming'])
|
| 306 |
return {
|
| 307 |
"train": wenet_train["train"],
|
| 308 |
"validation": wenet_valid,
|
|
@@ -352,12 +404,16 @@ else:
|
|
| 352 |
model = WhisperForConditionalGeneration.from_pretrained(MODEL_CHECKPOINT)
|
| 353 |
|
| 354 |
# Multi-GPU handling
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
if torch.cuda.device_count() > 1:
|
| 356 |
print(f"Using {torch.cuda.device_count()} GPUs for training")
|
| 357 |
# The model will be automatically distributed by the Trainer
|
| 358 |
-
model.to(device)
|
| 359 |
else:
|
| 360 |
-
model.to(device)
|
| 361 |
|
| 362 |
|
| 363 |
|
|
@@ -519,10 +575,13 @@ def compute_metrics(pred):
|
|
| 519 |
Compute WER and CER metrics for predictions
|
| 520 |
"""
|
| 521 |
pred_ids = pred.predictions
|
|
|
|
| 522 |
pred_str = main_processor.batch_decode(pred_ids, skip_special_tokens=True)
|
| 523 |
|
| 524 |
label_ids = pred.label_ids
|
|
|
|
| 525 |
label_ids[label_ids == -100] = main_processor.tokenizer.pad_token_id
|
|
|
|
| 526 |
ref_str = main_processor.batch_decode(label_ids, skip_special_tokens=True)
|
| 527 |
|
| 528 |
# lowercase & strip
|
|
@@ -531,7 +590,19 @@ def compute_metrics(pred):
|
|
| 531 |
|
| 532 |
wer_score = wer_metric.compute(predictions=pred_str, references=ref_str)
|
| 533 |
cer_score = cer_metric.compute(predictions=pred_str, references=ref_str)
|
| 534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
|
| 536 |
# Check for multi-GPU setup
|
| 537 |
num_gpus = torch.cuda.device_count()
|
|
@@ -578,6 +649,7 @@ training_args = Seq2SeqTrainingArguments(
|
|
| 578 |
metric_for_best_model=training_config['metric_for_best_model'],
|
| 579 |
greater_is_better=training_config['greater_is_better'],
|
| 580 |
push_to_hub=training_config['push_to_hub'],
|
|
|
|
| 581 |
save_total_limit=training_config['save_total_limit'],
|
| 582 |
# Multi-GPU specific settings
|
| 583 |
dataloader_drop_last=training_config['dataloader_drop_last'],
|
|
@@ -603,22 +675,50 @@ def evaluate_on_test_sets():
|
|
| 603 |
|
| 604 |
results = {}
|
| 605 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 606 |
for lang in enabled_languages:
|
| 607 |
if lang in processed_datasets:
|
| 608 |
lang_results = {}
|
| 609 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 610 |
if lang == "chinese":
|
| 611 |
# Chinese has multiple test splits
|
| 612 |
if "test_net" in processed_datasets[lang]:
|
| 613 |
print(f"\n***** Evaluating on WenetSpeech Chinese TEST_NET *****")
|
| 614 |
-
chi_testnet_metrics = trainer.predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 615 |
print(f"Chinese TEST_NET WER: {chi_testnet_metrics.metrics[f'test_{lang}_net_wer']*100:.2f}%")
|
| 616 |
print(f"Chinese TEST_NET CER: {chi_testnet_metrics.metrics[f'test_{lang}_net_cer']*100:.2f}%")
|
| 617 |
lang_results["test_net"] = chi_testnet_metrics.metrics
|
| 618 |
|
| 619 |
if "test_meeting" in processed_datasets[lang]:
|
| 620 |
print(f"\n***** Evaluating on WenetSpeech Chinese TEST_MEETING *****")
|
| 621 |
-
chi_testmeet_metrics = trainer.predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 622 |
print(f"Chinese TEST_MEETING WER: {chi_testmeet_metrics.metrics[f'test_{lang}_meeting_wer']*100:.2f}%")
|
| 623 |
print(f"Chinese TEST_MEETING CER: {chi_testmeet_metrics.metrics[f'test_{lang}_meeting_cer']*100:.2f}%")
|
| 624 |
lang_results["test_meeting"] = chi_testmeet_metrics.metrics
|
|
@@ -626,7 +726,11 @@ def evaluate_on_test_sets():
|
|
| 626 |
# Standard test split
|
| 627 |
if "test" in processed_datasets[lang]:
|
| 628 |
print(f"\n***** Evaluating on {lang.title()} test set *****")
|
| 629 |
-
test_metrics = trainer.predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 630 |
print(f"{lang.title()} Test WER: {test_metrics.metrics[f'test_{lang}_wer']*100:.2f}%")
|
| 631 |
print(f"{lang.title()} Test CER: {test_metrics.metrics[f'test_{lang}_cer']*100:.2f}%")
|
| 632 |
lang_results["test"] = test_metrics.metrics
|
|
@@ -666,7 +770,7 @@ if __name__ == "__main__":
|
|
| 666 |
trainer.train()
|
| 667 |
|
| 668 |
# Evaluate on all test sets
|
| 669 |
-
evaluate_on_test_sets()
|
| 670 |
|
| 671 |
|
| 672 |
|
|
|
|
| 47 |
import yaml
|
| 48 |
import argparse
|
| 49 |
from itertools import chain
|
| 50 |
+
import torch.distributed as dist
|
| 51 |
|
| 52 |
# Load configuration from YAML file
|
| 53 |
def load_config(config_path):
|
|
|
|
| 133 |
else: # english, chinese
|
| 134 |
text = item["text"]
|
| 135 |
|
| 136 |
+
# Map language to Whisper language token ID
|
| 137 |
+
lang_id_map = {
|
| 138 |
+
"english": 50259, # <|en|>
|
| 139 |
+
"chinese": 50260, # <|zh|>
|
| 140 |
+
"indonesian": 50275, # <|id|>
|
| 141 |
+
"malay": 50282, # <|ms|>
|
| 142 |
+
"khmer": 50323, # <|km|>
|
| 143 |
+
"cebuano": 50348, # <|tl|> (using Tagalog as fallback for Cebuano)
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
# Get language token ID
|
| 147 |
+
lang_token_id = lang_id_map.get(lang)
|
| 148 |
+
|
| 149 |
# Tokenize with appropriate processor
|
| 150 |
if lang == "cebuano":
|
| 151 |
labels = self.processors["cebuano"].tokenizer(
|
|
|
|
| 191 |
return {
|
| 192 |
"input_features": inputs.input_features.squeeze(0),
|
| 193 |
"labels": labels.input_ids.squeeze(0),
|
| 194 |
+
"language": lang,
|
| 195 |
+
"language_token_id": lang_token_id
|
| 196 |
}
|
| 197 |
|
| 198 |
def _process_audio(self, audio_sample):
|
|
|
|
| 231 |
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
| 232 |
# pad the labels to max length
|
| 233 |
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
|
| 234 |
+
|
| 235 |
+
# Get original labels before modification
|
| 236 |
+
labels = labels_batch["input_ids"]
|
| 237 |
|
| 238 |
+
# Task ID is fixed for transcription (50360)
|
| 239 |
+
task_token_id = 50360 # transcribe task
|
| 240 |
+
|
| 241 |
+
# Create a tensor to store new labels with language and task tokens prepended
|
| 242 |
+
batch_size = labels.size(0)
|
| 243 |
+
seq_length = labels.size(1)
|
| 244 |
+
# Add 2 tokens (lang token and task token) at the beginning
|
| 245 |
+
new_labels = torch.full((batch_size, seq_length + 2), self.processor.tokenizer.pad_token_id, dtype=labels.dtype, device=labels.device)
|
| 246 |
+
|
| 247 |
+
# Add the language token and task token at the beginning for each sample
|
| 248 |
+
for i, feature in enumerate(features):
|
| 249 |
+
# Add SOT token as first token (50258)
|
| 250 |
+
# new_labels[i, 0] = 50258 # SOT token
|
| 251 |
+
|
| 252 |
+
# Add language token as second token if available
|
| 253 |
+
if "language_token_id" in feature and feature["language_token_id"] is not None:
|
| 254 |
+
new_labels[i, 0] = feature["language_token_id"]
|
| 255 |
+
|
| 256 |
+
# Add task token as third token
|
| 257 |
+
new_labels[i, 1] = task_token_id
|
| 258 |
+
|
| 259 |
+
# Copy the original label tokens after the special tokens
|
| 260 |
+
token_length = min(seq_length, labels.size(1))
|
| 261 |
+
new_labels[i, 2:2+token_length] = labels[i, :token_length]
|
| 262 |
+
|
| 263 |
+
# Create new attention mask for padded sequences
|
| 264 |
+
new_attention_mask = torch.zeros_like(new_labels, dtype=torch.long)
|
| 265 |
+
for i in range(batch_size):
|
| 266 |
+
# Find the last non-padding token in the original sequence
|
| 267 |
+
orig_seq_len = (labels[i] != self.processor.tokenizer.pad_token_id).sum().item()
|
| 268 |
+
# Set attention mask to 1 for all tokens up to the end of the sequence + 2 special tokens
|
| 269 |
+
new_attention_mask[i, :orig_seq_len+2] = 1
|
| 270 |
+
|
| 271 |
+
# Replace padding with -100 to ignore loss correctly
|
| 272 |
+
new_labels = new_labels.masked_fill(new_attention_mask.ne(1), -100)
|
| 273 |
|
| 274 |
# if bos token is appended in previous tokenization step,
|
| 275 |
# cut bos token here as it's append later anyways
|
| 276 |
+
if (new_labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
|
| 277 |
+
new_labels = new_labels[:, 1:]
|
| 278 |
|
| 279 |
+
batch["labels"] = new_labels
|
| 280 |
+
batch["attention_mask"] = new_attention_mask
|
| 281 |
|
| 282 |
return batch
|
| 283 |
|
|
|
|
| 352 |
"""Load Chinese dataset with multiple test splits"""
|
| 353 |
print("Loading Chinese...")
|
| 354 |
wenet_train = load_dataset(dataset_config['train_dataset'], streaming=dataset_config['streaming'])
|
| 355 |
+
wenet_valid = load_dataset(dataset_config['validation_dataset'], dataset_config['validation_config'], split="validation", streaming=dataset_config['streaming'], trust_remote_code=dataset_config['trust_remote_code'])
|
| 356 |
+
wenet_testnet = load_dataset(dataset_config['test_net_dataset'], dataset_config['test_net_config'], split="test", streaming=dataset_config['streaming'], trust_remote_code=dataset_config['trust_remote_code'])
|
| 357 |
+
wenet_testmeeting = load_dataset(dataset_config['test_meeting_dataset'], dataset_config['test_meeting_config'], split="test", streaming=dataset_config['streaming'], trust_remote_code=dataset_config['trust_remote_code'])
|
| 358 |
return {
|
| 359 |
"train": wenet_train["train"],
|
| 360 |
"validation": wenet_valid,
|
|
|
|
| 404 |
model = WhisperForConditionalGeneration.from_pretrained(MODEL_CHECKPOINT)
|
| 405 |
|
| 406 |
# Multi-GPU handling
|
| 407 |
+
local_rank = int(os.environ["LOCAL_RANK"])
|
| 408 |
+
torch.cuda.set_device(local_rank)
|
| 409 |
+
print(f"Using GPU {local_rank} for training")
|
| 410 |
+
dist.init_process_group(backend="nccl")
|
| 411 |
if torch.cuda.device_count() > 1:
|
| 412 |
print(f"Using {torch.cuda.device_count()} GPUs for training")
|
| 413 |
# The model will be automatically distributed by the Trainer
|
| 414 |
+
model.to(torch.device("cuda", local_rank))
|
| 415 |
else:
|
| 416 |
+
model.to(torch.device("cuda", local_rank))
|
| 417 |
|
| 418 |
|
| 419 |
|
|
|
|
| 575 |
Compute WER and CER metrics for predictions
|
| 576 |
"""
|
| 577 |
pred_ids = pred.predictions
|
| 578 |
+
# Decode predictions, skipping special tokens
|
| 579 |
pred_str = main_processor.batch_decode(pred_ids, skip_special_tokens=True)
|
| 580 |
|
| 581 |
label_ids = pred.label_ids
|
| 582 |
+
# Replace -100 with pad token ID for decoding
|
| 583 |
label_ids[label_ids == -100] = main_processor.tokenizer.pad_token_id
|
| 584 |
+
# Decode reference texts, also skipping special tokens
|
| 585 |
ref_str = main_processor.batch_decode(label_ids, skip_special_tokens=True)
|
| 586 |
|
| 587 |
# lowercase & strip
|
|
|
|
| 590 |
|
| 591 |
wer_score = wer_metric.compute(predictions=pred_str, references=ref_str)
|
| 592 |
cer_score = cer_metric.compute(predictions=pred_str, references=ref_str)
|
| 593 |
+
|
| 594 |
+
# Combine metrics
|
| 595 |
+
metrics = {"wer": wer_score, "cer": cer_score}
|
| 596 |
+
|
| 597 |
+
# Log example predictions
|
| 598 |
+
if len(pred_str) > 0:
|
| 599 |
+
num_examples = min(3, len(pred_str))
|
| 600 |
+
for i in range(num_examples):
|
| 601 |
+
print(f"Example {i}:")
|
| 602 |
+
print(f" Reference: {ref_str[i]}")
|
| 603 |
+
print(f" Prediction: {pred_str[i]}")
|
| 604 |
+
|
| 605 |
+
return metrics
|
| 606 |
|
| 607 |
# Check for multi-GPU setup
|
| 608 |
num_gpus = torch.cuda.device_count()
|
|
|
|
| 649 |
metric_for_best_model=training_config['metric_for_best_model'],
|
| 650 |
greater_is_better=training_config['greater_is_better'],
|
| 651 |
push_to_hub=training_config['push_to_hub'],
|
| 652 |
+
hub_private_repo=training_config['hub_private_repo'], # Always push to private repo
|
| 653 |
save_total_limit=training_config['save_total_limit'],
|
| 654 |
# Multi-GPU specific settings
|
| 655 |
dataloader_drop_last=training_config['dataloader_drop_last'],
|
|
|
|
| 675 |
|
| 676 |
results = {}
|
| 677 |
|
| 678 |
+
# Define language-specific generation parameters
|
| 679 |
+
lang_id_map = {
|
| 680 |
+
"english": 50259, # <|en|>
|
| 681 |
+
"chinese": 50260, # <|zh|>
|
| 682 |
+
"indonesian": 50275, # <|id|>
|
| 683 |
+
"malay": 50282, # <|ms|>
|
| 684 |
+
"khmer": 50323, # <|km|>
|
| 685 |
+
"cebuano": 50348, # <|tl|> (using Tagalog as fallback for Cebuano)
|
| 686 |
+
}
|
| 687 |
+
|
| 688 |
for lang in enabled_languages:
|
| 689 |
if lang in processed_datasets:
|
| 690 |
lang_results = {}
|
| 691 |
|
| 692 |
+
# Set language-specific generation parameters
|
| 693 |
+
lang_token_id = lang_id_map.get(lang)
|
| 694 |
+
task_token_id = 50360 # transcribe task
|
| 695 |
+
|
| 696 |
+
# Define forced decoder IDs for generation if language is supported
|
| 697 |
+
forced_decoder_ids = None
|
| 698 |
+
if lang_token_id:
|
| 699 |
+
forced_decoder_ids = [[1, lang_token_id], [2, task_token_id]]
|
| 700 |
+
print(f"Using forced_decoder_ids for {lang}: {forced_decoder_ids}")
|
| 701 |
+
|
| 702 |
if lang == "chinese":
|
| 703 |
# Chinese has multiple test splits
|
| 704 |
if "test_net" in processed_datasets[lang]:
|
| 705 |
print(f"\n***** Evaluating on WenetSpeech Chinese TEST_NET *****")
|
| 706 |
+
chi_testnet_metrics = trainer.predict(
|
| 707 |
+
processed_datasets[lang]["test_net"],
|
| 708 |
+
metric_key_prefix=f"test_{lang}_net",
|
| 709 |
+
forced_decoder_ids=forced_decoder_ids
|
| 710 |
+
)
|
| 711 |
print(f"Chinese TEST_NET WER: {chi_testnet_metrics.metrics[f'test_{lang}_net_wer']*100:.2f}%")
|
| 712 |
print(f"Chinese TEST_NET CER: {chi_testnet_metrics.metrics[f'test_{lang}_net_cer']*100:.2f}%")
|
| 713 |
lang_results["test_net"] = chi_testnet_metrics.metrics
|
| 714 |
|
| 715 |
if "test_meeting" in processed_datasets[lang]:
|
| 716 |
print(f"\n***** Evaluating on WenetSpeech Chinese TEST_MEETING *****")
|
| 717 |
+
chi_testmeet_metrics = trainer.predict(
|
| 718 |
+
processed_datasets[lang]["test_meeting"],
|
| 719 |
+
metric_key_prefix=f"test_{lang}_meeting",
|
| 720 |
+
forced_decoder_ids=forced_decoder_ids
|
| 721 |
+
)
|
| 722 |
print(f"Chinese TEST_MEETING WER: {chi_testmeet_metrics.metrics[f'test_{lang}_meeting_wer']*100:.2f}%")
|
| 723 |
print(f"Chinese TEST_MEETING CER: {chi_testmeet_metrics.metrics[f'test_{lang}_meeting_cer']*100:.2f}%")
|
| 724 |
lang_results["test_meeting"] = chi_testmeet_metrics.metrics
|
|
|
|
| 726 |
# Standard test split
|
| 727 |
if "test" in processed_datasets[lang]:
|
| 728 |
print(f"\n***** Evaluating on {lang.title()} test set *****")
|
| 729 |
+
test_metrics = trainer.predict(
|
| 730 |
+
processed_datasets[lang]["test"],
|
| 731 |
+
metric_key_prefix=f"test_{lang}",
|
| 732 |
+
forced_decoder_ids=forced_decoder_ids
|
| 733 |
+
)
|
| 734 |
print(f"{lang.title()} Test WER: {test_metrics.metrics[f'test_{lang}_wer']*100:.2f}%")
|
| 735 |
print(f"{lang.title()} Test CER: {test_metrics.metrics[f'test_{lang}_cer']*100:.2f}%")
|
| 736 |
lang_results["test"] = test_metrics.metrics
|
|
|
|
| 770 |
trainer.train()
|
| 771 |
|
| 772 |
# Evaluate on all test sets
|
| 773 |
+
# evaluate_on_test_sets()
|
| 774 |
|
| 775 |
|
| 776 |
|
inference.py
CHANGED
|
@@ -22,14 +22,14 @@ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
|
| 22 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 23 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 24 |
|
| 25 |
-
model_id = "./whisper-fleurs-km_kh-small"
|
| 26 |
|
| 27 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 28 |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 29 |
)
|
| 30 |
model.to(device)
|
| 31 |
whisper_model = "openai/whisper-large-v3"
|
| 32 |
-
processor = WhisperProcessor.from_pretrained(whisper_model
|
| 33 |
|
| 34 |
asr = pipeline(
|
| 35 |
"automatic-speech-recognition",
|
|
@@ -44,7 +44,6 @@ asr = pipeline(
|
|
| 44 |
num_beams=1, # Use beam search for better quality
|
| 45 |
do_sample=False, # Disable sampling for deterministic output
|
| 46 |
early_stopping=False, # Stop when sufficient beams are complete
|
| 47 |
-
suppress_tokens=[],
|
| 48 |
)
|
| 49 |
|
| 50 |
|
|
@@ -52,7 +51,7 @@ asr = pipeline(
|
|
| 52 |
def transcribe_batch(batch):
|
| 53 |
# `batch["audio"]` is a list of {"array": np.ndarray, ...}
|
| 54 |
inputs = [ ex["array"] for ex in batch["audio"] ]
|
| 55 |
-
outputs = asr(inputs) # returns a list of dicts with "text"
|
| 56 |
# lower-case and strip to normalize for CER
|
| 57 |
preds = [ out["text"].lower().strip() for out in outputs ]
|
| 58 |
return {"prediction": preds}
|
|
|
|
| 22 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 23 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 24 |
|
| 25 |
+
model_id = "./ft-lid-whisper-fleurs-km_kh-small"
|
| 26 |
|
| 27 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 28 |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 29 |
)
|
| 30 |
model.to(device)
|
| 31 |
whisper_model = "openai/whisper-large-v3"
|
| 32 |
+
processor = WhisperProcessor.from_pretrained(whisper_model)
|
| 33 |
|
| 34 |
asr = pipeline(
|
| 35 |
"automatic-speech-recognition",
|
|
|
|
| 44 |
num_beams=1, # Use beam search for better quality
|
| 45 |
do_sample=False, # Disable sampling for deterministic output
|
| 46 |
early_stopping=False, # Stop when sufficient beams are complete
|
|
|
|
| 47 |
)
|
| 48 |
|
| 49 |
|
|
|
|
| 51 |
def transcribe_batch(batch):
|
| 52 |
# `batch["audio"]` is a list of {"array": np.ndarray, ...}
|
| 53 |
inputs = [ ex["array"] for ex in batch["audio"] ]
|
| 54 |
+
outputs = asr(inputs, generate_kwargs={"language": "khmer"}) # returns a list of dicts with "text"
|
| 55 |
# lower-case and strip to normalize for CER
|
| 56 |
preds = [ out["text"].lower().strip() for out in outputs ]
|
| 57 |
return {"prediction": preds}
|
inference/compute-wer.py
ADDED
|
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
import re, sys, unicodedata
|
| 5 |
+
import codecs
|
| 6 |
+
|
| 7 |
+
remove_tag = True
|
| 8 |
+
spacelist = [' ', '\t', '\r', '\n']
|
| 9 |
+
puncts = [
|
| 10 |
+
'!', ',', '?', '、', '。', '!', ',', ';', '?', ':', '「', '」', '︰', '『', '』',
|
| 11 |
+
'《', '》', '(', ')', '(', ')', '[', ']', '【', '】', '{', '}', '〔', '〕',
|
| 12 |
+
'⟨', '⟩', '《', '》'
|
| 13 |
+
]
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def characterize(string):
|
| 17 |
+
res = []
|
| 18 |
+
i = 0
|
| 19 |
+
while i < len(string):
|
| 20 |
+
char = string[i]
|
| 21 |
+
if char in puncts:
|
| 22 |
+
i += 1
|
| 23 |
+
continue
|
| 24 |
+
cat1 = unicodedata.category(char)
|
| 25 |
+
#https://unicodebook.readthedocs.io/unicode.html#unicode-categories
|
| 26 |
+
if cat1 == 'Zs' or cat1 == 'Cn' or char in spacelist: # space or not assigned
|
| 27 |
+
i += 1
|
| 28 |
+
continue
|
| 29 |
+
if cat1 == 'Lo': # letter-other
|
| 30 |
+
res.append(char)
|
| 31 |
+
i += 1
|
| 32 |
+
else:
|
| 33 |
+
# some input looks like: <unk><noise>, we want to separate it to two words.
|
| 34 |
+
sep = ' '
|
| 35 |
+
if char == '<': sep = '>'
|
| 36 |
+
j = i + 1
|
| 37 |
+
while j < len(string):
|
| 38 |
+
c = string[j]
|
| 39 |
+
if ord(c) >= 128 or (c in spacelist) or (c == sep):
|
| 40 |
+
break
|
| 41 |
+
j += 1
|
| 42 |
+
if j < len(string) and string[j] == '>':
|
| 43 |
+
j += 1
|
| 44 |
+
res.append(string[i:j])
|
| 45 |
+
i = j
|
| 46 |
+
return res
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def stripoff_tags(x):
|
| 50 |
+
if not x: return ''
|
| 51 |
+
chars = []
|
| 52 |
+
i = 0
|
| 53 |
+
T = len(x)
|
| 54 |
+
while i < T:
|
| 55 |
+
if x[i] == '<':
|
| 56 |
+
while i < T and x[i] != '>':
|
| 57 |
+
i += 1
|
| 58 |
+
i += 1
|
| 59 |
+
else:
|
| 60 |
+
chars.append(x[i])
|
| 61 |
+
i += 1
|
| 62 |
+
return ''.join(chars)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def normalize(sentence, ignore_words, cs, split=None):
|
| 66 |
+
""" sentence, ignore_words are both in unicode
|
| 67 |
+
"""
|
| 68 |
+
new_sentence = []
|
| 69 |
+
for token in sentence:
|
| 70 |
+
x = token
|
| 71 |
+
if not cs:
|
| 72 |
+
x = x.upper()
|
| 73 |
+
if x in ignore_words:
|
| 74 |
+
continue
|
| 75 |
+
if remove_tag:
|
| 76 |
+
x = stripoff_tags(x)
|
| 77 |
+
x = re.sub(r'[.,!?;:()\[\]{}<>""„""«»‹›\/\\|@#$%^&*_=+~`-]', '', x)
|
| 78 |
+
# Skip tokens containing any digits
|
| 79 |
+
if re.search(r'\d', x):
|
| 80 |
+
continue
|
| 81 |
+
if not x:
|
| 82 |
+
continue
|
| 83 |
+
if split and x in split:
|
| 84 |
+
new_sentence += split[x]
|
| 85 |
+
else:
|
| 86 |
+
new_sentence.append(x)
|
| 87 |
+
return new_sentence
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class Calculator:
|
| 91 |
+
|
| 92 |
+
def __init__(self):
|
| 93 |
+
self.data = {}
|
| 94 |
+
self.space = []
|
| 95 |
+
self.cost = {}
|
| 96 |
+
self.cost['cor'] = 0
|
| 97 |
+
self.cost['sub'] = 1
|
| 98 |
+
self.cost['del'] = 1
|
| 99 |
+
self.cost['ins'] = 1
|
| 100 |
+
|
| 101 |
+
def calculate(self, lab, rec):
|
| 102 |
+
# Initialization
|
| 103 |
+
lab.insert(0, '')
|
| 104 |
+
rec.insert(0, '')
|
| 105 |
+
while len(self.space) < len(lab):
|
| 106 |
+
self.space.append([])
|
| 107 |
+
for row in self.space:
|
| 108 |
+
for element in row:
|
| 109 |
+
element['dist'] = 0
|
| 110 |
+
element['error'] = 'non'
|
| 111 |
+
while len(row) < len(rec):
|
| 112 |
+
row.append({'dist': 0, 'error': 'non'})
|
| 113 |
+
for i in range(len(lab)):
|
| 114 |
+
self.space[i][0]['dist'] = i
|
| 115 |
+
self.space[i][0]['error'] = 'del'
|
| 116 |
+
for j in range(len(rec)):
|
| 117 |
+
self.space[0][j]['dist'] = j
|
| 118 |
+
self.space[0][j]['error'] = 'ins'
|
| 119 |
+
self.space[0][0]['error'] = 'non'
|
| 120 |
+
for token in lab:
|
| 121 |
+
if token not in self.data and len(token) > 0:
|
| 122 |
+
self.data[token] = {
|
| 123 |
+
'all': 0,
|
| 124 |
+
'cor': 0,
|
| 125 |
+
'sub': 0,
|
| 126 |
+
'ins': 0,
|
| 127 |
+
'del': 0
|
| 128 |
+
}
|
| 129 |
+
for token in rec:
|
| 130 |
+
if token not in self.data and len(token) > 0:
|
| 131 |
+
self.data[token] = {
|
| 132 |
+
'all': 0,
|
| 133 |
+
'cor': 0,
|
| 134 |
+
'sub': 0,
|
| 135 |
+
'ins': 0,
|
| 136 |
+
'del': 0
|
| 137 |
+
}
|
| 138 |
+
# Computing edit distance
|
| 139 |
+
for i, lab_token in enumerate(lab):
|
| 140 |
+
for j, rec_token in enumerate(rec):
|
| 141 |
+
if i == 0 or j == 0:
|
| 142 |
+
continue
|
| 143 |
+
min_dist = sys.maxsize
|
| 144 |
+
min_error = 'none'
|
| 145 |
+
dist = self.space[i - 1][j]['dist'] + self.cost['del']
|
| 146 |
+
error = 'del'
|
| 147 |
+
if dist < min_dist:
|
| 148 |
+
min_dist = dist
|
| 149 |
+
min_error = error
|
| 150 |
+
dist = self.space[i][j - 1]['dist'] + self.cost['ins']
|
| 151 |
+
error = 'ins'
|
| 152 |
+
if dist < min_dist:
|
| 153 |
+
min_dist = dist
|
| 154 |
+
min_error = error
|
| 155 |
+
if lab_token == rec_token:
|
| 156 |
+
dist = self.space[i - 1][j - 1]['dist'] + self.cost['cor']
|
| 157 |
+
error = 'cor'
|
| 158 |
+
else:
|
| 159 |
+
dist = self.space[i - 1][j - 1]['dist'] + self.cost['sub']
|
| 160 |
+
error = 'sub'
|
| 161 |
+
if dist < min_dist:
|
| 162 |
+
min_dist = dist
|
| 163 |
+
min_error = error
|
| 164 |
+
self.space[i][j]['dist'] = min_dist
|
| 165 |
+
self.space[i][j]['error'] = min_error
|
| 166 |
+
# Tracing back
|
| 167 |
+
result = {
|
| 168 |
+
'lab': [],
|
| 169 |
+
'rec': [],
|
| 170 |
+
'all': 0,
|
| 171 |
+
'cor': 0,
|
| 172 |
+
'sub': 0,
|
| 173 |
+
'ins': 0,
|
| 174 |
+
'del': 0
|
| 175 |
+
}
|
| 176 |
+
i = len(lab) - 1
|
| 177 |
+
j = len(rec) - 1
|
| 178 |
+
while True:
|
| 179 |
+
if self.space[i][j]['error'] == 'cor': # correct
|
| 180 |
+
if len(lab[i]) > 0:
|
| 181 |
+
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
|
| 182 |
+
self.data[lab[i]]['cor'] = self.data[lab[i]]['cor'] + 1
|
| 183 |
+
result['all'] = result['all'] + 1
|
| 184 |
+
result['cor'] = result['cor'] + 1
|
| 185 |
+
result['lab'].insert(0, lab[i])
|
| 186 |
+
result['rec'].insert(0, rec[j])
|
| 187 |
+
i = i - 1
|
| 188 |
+
j = j - 1
|
| 189 |
+
elif self.space[i][j]['error'] == 'sub': # substitution
|
| 190 |
+
if len(lab[i]) > 0:
|
| 191 |
+
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
|
| 192 |
+
self.data[lab[i]]['sub'] = self.data[lab[i]]['sub'] + 1
|
| 193 |
+
result['all'] = result['all'] + 1
|
| 194 |
+
result['sub'] = result['sub'] + 1
|
| 195 |
+
result['lab'].insert(0, lab[i])
|
| 196 |
+
result['rec'].insert(0, rec[j])
|
| 197 |
+
i = i - 1
|
| 198 |
+
j = j - 1
|
| 199 |
+
elif self.space[i][j]['error'] == 'del': # deletion
|
| 200 |
+
if len(lab[i]) > 0:
|
| 201 |
+
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
|
| 202 |
+
self.data[lab[i]]['del'] = self.data[lab[i]]['del'] + 1
|
| 203 |
+
result['all'] = result['all'] + 1
|
| 204 |
+
result['del'] = result['del'] + 1
|
| 205 |
+
result['lab'].insert(0, lab[i])
|
| 206 |
+
result['rec'].insert(0, "")
|
| 207 |
+
i = i - 1
|
| 208 |
+
elif self.space[i][j]['error'] == 'ins': # insertion
|
| 209 |
+
if len(rec[j]) > 0:
|
| 210 |
+
self.data[rec[j]]['ins'] = self.data[rec[j]]['ins'] + 1
|
| 211 |
+
result['ins'] = result['ins'] + 1
|
| 212 |
+
result['lab'].insert(0, "")
|
| 213 |
+
result['rec'].insert(0, rec[j])
|
| 214 |
+
j = j - 1
|
| 215 |
+
elif self.space[i][j]['error'] == 'non': # starting point
|
| 216 |
+
break
|
| 217 |
+
else: # shouldn't reach here
|
| 218 |
+
print(
|
| 219 |
+
'this should not happen , i = {i} , j = {j} , error = {error}'
|
| 220 |
+
.format(i=i, j=j, error=self.space[i][j]['error']))
|
| 221 |
+
return result
|
| 222 |
+
|
| 223 |
+
def overall(self):
|
| 224 |
+
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
|
| 225 |
+
for token in self.data:
|
| 226 |
+
result['all'] = result['all'] + self.data[token]['all']
|
| 227 |
+
result['cor'] = result['cor'] + self.data[token]['cor']
|
| 228 |
+
result['sub'] = result['sub'] + self.data[token]['sub']
|
| 229 |
+
result['ins'] = result['ins'] + self.data[token]['ins']
|
| 230 |
+
result['del'] = result['del'] + self.data[token]['del']
|
| 231 |
+
return result
|
| 232 |
+
|
| 233 |
+
def cluster(self, data):
|
| 234 |
+
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
|
| 235 |
+
for token in data:
|
| 236 |
+
if token in self.data:
|
| 237 |
+
result['all'] = result['all'] + self.data[token]['all']
|
| 238 |
+
result['cor'] = result['cor'] + self.data[token]['cor']
|
| 239 |
+
result['sub'] = result['sub'] + self.data[token]['sub']
|
| 240 |
+
result['ins'] = result['ins'] + self.data[token]['ins']
|
| 241 |
+
result['del'] = result['del'] + self.data[token]['del']
|
| 242 |
+
return result
|
| 243 |
+
|
| 244 |
+
def keys(self):
|
| 245 |
+
return list(self.data.keys())
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def width(string):
|
| 249 |
+
return sum(1 + (unicodedata.east_asian_width(c) in "AFW") for c in string)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def default_cluster(word):
|
| 253 |
+
|
| 254 |
+
# unicode_names = [unicodedata.name(char) for char in word]
|
| 255 |
+
unicode_names = []
|
| 256 |
+
for char in word:
|
| 257 |
+
try:
|
| 258 |
+
unicode_names.append(unicodedata.name(char))
|
| 259 |
+
except ValueError:
|
| 260 |
+
unicode_names.append("UNK")
|
| 261 |
+
for i in reversed(range(len(unicode_names))):
|
| 262 |
+
if unicode_names[i].startswith('DIGIT'): # 1
|
| 263 |
+
unicode_names[i] = 'Number' # 'DIGIT'
|
| 264 |
+
elif (unicode_names[i].startswith('CJK UNIFIED IDEOGRAPH')
|
| 265 |
+
or unicode_names[i].startswith('CJK COMPATIBILITY IDEOGRAPH')):
|
| 266 |
+
# 明 / 郎
|
| 267 |
+
unicode_names[i] = 'Mandarin' # 'CJK IDEOGRAPH'
|
| 268 |
+
elif (unicode_names[i].startswith('LATIN CAPITAL LETTER')
|
| 269 |
+
or unicode_names[i].startswith('LATIN SMALL LETTER')):
|
| 270 |
+
# A / a
|
| 271 |
+
unicode_names[i] = 'English' # 'LATIN LETTER'
|
| 272 |
+
elif unicode_names[i].startswith('HIRAGANA LETTER'): # は こ め
|
| 273 |
+
unicode_names[i] = 'Japanese' # 'GANA LETTER'
|
| 274 |
+
elif (unicode_names[i].startswith('AMPERSAND')
|
| 275 |
+
or unicode_names[i].startswith('APOSTROPHE')
|
| 276 |
+
or unicode_names[i].startswith('COMMERCIAL AT')
|
| 277 |
+
or unicode_names[i].startswith('DEGREE CELSIUS')
|
| 278 |
+
or unicode_names[i].startswith('EQUALS SIGN')
|
| 279 |
+
or unicode_names[i].startswith('FULL STOP')
|
| 280 |
+
or unicode_names[i].startswith('HYPHEN-MINUS')
|
| 281 |
+
or unicode_names[i].startswith('LOW LINE')
|
| 282 |
+
or unicode_names[i].startswith('NUMBER SIGN')
|
| 283 |
+
or unicode_names[i].startswith('PLUS SIGN')
|
| 284 |
+
or unicode_names[i].startswith('SEMICOLON')):
|
| 285 |
+
# & / ' / @ / ℃ / = / . / - / _ / # / + / ;
|
| 286 |
+
del unicode_names[i]
|
| 287 |
+
else:
|
| 288 |
+
return 'Other'
|
| 289 |
+
if len(unicode_names) == 0:
|
| 290 |
+
return 'Other'
|
| 291 |
+
if len(unicode_names) == 1:
|
| 292 |
+
return unicode_names[0]
|
| 293 |
+
for i in range(len(unicode_names) - 1):
|
| 294 |
+
if unicode_names[i] != unicode_names[i + 1]:
|
| 295 |
+
return 'Other'
|
| 296 |
+
return unicode_names[0]
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def usage():
|
| 300 |
+
print(
|
| 301 |
+
"compute-wer.py : compute word error rate (WER) and align recognition results and references."
|
| 302 |
+
)
|
| 303 |
+
print(
|
| 304 |
+
" usage : python compute-wer.py [--cs={0,1}] [--cluster=foo] [--ig=ignore_file] [--char={0,1}] [--v={0,1}] [--padding-symbol={space,underline}] test.ref test.hyp > test.wer"
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
if __name__ == '__main__':
|
| 309 |
+
if len(sys.argv) == 1:
|
| 310 |
+
usage()
|
| 311 |
+
sys.exit(0)
|
| 312 |
+
calculator = Calculator()
|
| 313 |
+
cluster_file = ''
|
| 314 |
+
ignore_words = set()
|
| 315 |
+
tochar = False
|
| 316 |
+
verbose = 1
|
| 317 |
+
padding_symbol = ' '
|
| 318 |
+
case_sensitive = False
|
| 319 |
+
max_words_per_line = sys.maxsize
|
| 320 |
+
split = None
|
| 321 |
+
while len(sys.argv) > 3:
|
| 322 |
+
a = '--maxw='
|
| 323 |
+
if sys.argv[1].startswith(a):
|
| 324 |
+
b = sys.argv[1][len(a):]
|
| 325 |
+
del sys.argv[1]
|
| 326 |
+
max_words_per_line = int(b)
|
| 327 |
+
continue
|
| 328 |
+
a = '--rt='
|
| 329 |
+
if sys.argv[1].startswith(a):
|
| 330 |
+
b = sys.argv[1][len(a):].lower()
|
| 331 |
+
del sys.argv[1]
|
| 332 |
+
remove_tag = (b == 'true') or (b != '0')
|
| 333 |
+
continue
|
| 334 |
+
a = '--cs='
|
| 335 |
+
if sys.argv[1].startswith(a):
|
| 336 |
+
b = sys.argv[1][len(a):].lower()
|
| 337 |
+
del sys.argv[1]
|
| 338 |
+
case_sensitive = (b == 'true') or (b != '0')
|
| 339 |
+
continue
|
| 340 |
+
a = '--cluster='
|
| 341 |
+
if sys.argv[1].startswith(a):
|
| 342 |
+
cluster_file = sys.argv[1][len(a):]
|
| 343 |
+
del sys.argv[1]
|
| 344 |
+
continue
|
| 345 |
+
a = '--splitfile='
|
| 346 |
+
if sys.argv[1].startswith(a):
|
| 347 |
+
split_file = sys.argv[1][len(a):]
|
| 348 |
+
del sys.argv[1]
|
| 349 |
+
split = dict()
|
| 350 |
+
with codecs.open(split_file, 'r', 'utf-8') as fh:
|
| 351 |
+
for line in fh: # line in unicode
|
| 352 |
+
words = line.strip().split()
|
| 353 |
+
if len(words) >= 2:
|
| 354 |
+
split[words[0]] = words[1:]
|
| 355 |
+
continue
|
| 356 |
+
a = '--ig='
|
| 357 |
+
if sys.argv[1].startswith(a):
|
| 358 |
+
ignore_file = sys.argv[1][len(a):]
|
| 359 |
+
del sys.argv[1]
|
| 360 |
+
with codecs.open(ignore_file, 'r', 'utf-8') as fh:
|
| 361 |
+
for line in fh: # line in unicode
|
| 362 |
+
line = line.strip()
|
| 363 |
+
if len(line) > 0:
|
| 364 |
+
ignore_words.add(line)
|
| 365 |
+
continue
|
| 366 |
+
a = '--char='
|
| 367 |
+
if sys.argv[1].startswith(a):
|
| 368 |
+
b = sys.argv[1][len(a):].lower()
|
| 369 |
+
del sys.argv[1]
|
| 370 |
+
tochar = (b == 'true') or (b != '0')
|
| 371 |
+
continue
|
| 372 |
+
a = '--v='
|
| 373 |
+
if sys.argv[1].startswith(a):
|
| 374 |
+
b = sys.argv[1][len(a):].lower()
|
| 375 |
+
del sys.argv[1]
|
| 376 |
+
verbose = 0
|
| 377 |
+
try:
|
| 378 |
+
verbose = int(b)
|
| 379 |
+
except:
|
| 380 |
+
if b == 'true' or b != '0':
|
| 381 |
+
verbose = 1
|
| 382 |
+
continue
|
| 383 |
+
a = '--padding-symbol='
|
| 384 |
+
if sys.argv[1].startswith(a):
|
| 385 |
+
b = sys.argv[1][len(a):].lower()
|
| 386 |
+
del sys.argv[1]
|
| 387 |
+
if b == 'space':
|
| 388 |
+
padding_symbol = ' '
|
| 389 |
+
elif b == 'underline':
|
| 390 |
+
padding_symbol = '_'
|
| 391 |
+
continue
|
| 392 |
+
if True or sys.argv[1].startswith('-'):
|
| 393 |
+
#ignore invalid switch
|
| 394 |
+
del sys.argv[1]
|
| 395 |
+
continue
|
| 396 |
+
|
| 397 |
+
if not case_sensitive:
|
| 398 |
+
ig = set([w.upper() for w in ignore_words])
|
| 399 |
+
ignore_words = ig
|
| 400 |
+
|
| 401 |
+
default_clusters = {}
|
| 402 |
+
default_words = {}
|
| 403 |
+
|
| 404 |
+
ref_file = sys.argv[1]
|
| 405 |
+
hyp_file = sys.argv[2]
|
| 406 |
+
rec_set = {}
|
| 407 |
+
if split and not case_sensitive:
|
| 408 |
+
newsplit = dict()
|
| 409 |
+
for w in split:
|
| 410 |
+
words = split[w]
|
| 411 |
+
for i in range(len(words)):
|
| 412 |
+
words[i] = words[i].upper()
|
| 413 |
+
newsplit[w.upper()] = words
|
| 414 |
+
split = newsplit
|
| 415 |
+
|
| 416 |
+
with codecs.open(hyp_file, 'r', 'utf-8') as fh:
|
| 417 |
+
for line in fh:
|
| 418 |
+
if tochar:
|
| 419 |
+
array = characterize(line)
|
| 420 |
+
else:
|
| 421 |
+
array = line.strip().split()
|
| 422 |
+
if len(array) == 0: continue
|
| 423 |
+
fid = array[0]
|
| 424 |
+
rec_set[fid] = normalize(array[1:], ignore_words, case_sensitive,
|
| 425 |
+
split)
|
| 426 |
+
|
| 427 |
+
# compute error rate on the interaction of reference file and hyp file
|
| 428 |
+
for line in open(ref_file, 'r', encoding='utf-8'):
|
| 429 |
+
if tochar:
|
| 430 |
+
array = characterize(line)
|
| 431 |
+
else:
|
| 432 |
+
array = line.rstrip('\n').split()
|
| 433 |
+
if len(array) == 0: continue
|
| 434 |
+
fid = array[0]
|
| 435 |
+
if fid not in rec_set:
|
| 436 |
+
continue
|
| 437 |
+
lab = normalize(array[1:], ignore_words, case_sensitive, split)
|
| 438 |
+
rec = rec_set[fid]
|
| 439 |
+
if verbose:
|
| 440 |
+
print('\nutt: %s' % fid)
|
| 441 |
+
|
| 442 |
+
for word in rec + lab:
|
| 443 |
+
if word not in default_words:
|
| 444 |
+
default_cluster_name = default_cluster(word)
|
| 445 |
+
if default_cluster_name not in default_clusters:
|
| 446 |
+
default_clusters[default_cluster_name] = {}
|
| 447 |
+
if word not in default_clusters[default_cluster_name]:
|
| 448 |
+
default_clusters[default_cluster_name][word] = 1
|
| 449 |
+
default_words[word] = default_cluster_name
|
| 450 |
+
|
| 451 |
+
result = calculator.calculate(lab, rec)
|
| 452 |
+
if verbose:
|
| 453 |
+
if result['all'] != 0:
|
| 454 |
+
wer = float(result['ins'] + result['sub'] +
|
| 455 |
+
result['del']) * 100.0 / result['all']
|
| 456 |
+
else:
|
| 457 |
+
wer = 0.0
|
| 458 |
+
print('WER: %4.2f %%' % wer, end=' ')
|
| 459 |
+
print('N=%d C=%d S=%d D=%d I=%d' %
|
| 460 |
+
(result['all'], result['cor'], result['sub'], result['del'],
|
| 461 |
+
result['ins']))
|
| 462 |
+
space = {}
|
| 463 |
+
space['lab'] = []
|
| 464 |
+
space['rec'] = []
|
| 465 |
+
for idx in range(len(result['lab'])):
|
| 466 |
+
len_lab = width(result['lab'][idx])
|
| 467 |
+
len_rec = width(result['rec'][idx])
|
| 468 |
+
length = max(len_lab, len_rec)
|
| 469 |
+
space['lab'].append(length - len_lab)
|
| 470 |
+
space['rec'].append(length - len_rec)
|
| 471 |
+
upper_lab = len(result['lab'])
|
| 472 |
+
upper_rec = len(result['rec'])
|
| 473 |
+
lab1, rec1 = 0, 0
|
| 474 |
+
while lab1 < upper_lab or rec1 < upper_rec:
|
| 475 |
+
if verbose > 1:
|
| 476 |
+
print('lab(%s):' % fid.encode('utf-8'), end=' ')
|
| 477 |
+
else:
|
| 478 |
+
print('lab:', end=' ')
|
| 479 |
+
lab2 = min(upper_lab, lab1 + max_words_per_line)
|
| 480 |
+
for idx in range(lab1, lab2):
|
| 481 |
+
token = result['lab'][idx]
|
| 482 |
+
print('{token}'.format(token=token), end='')
|
| 483 |
+
for n in range(space['lab'][idx]):
|
| 484 |
+
print(padding_symbol, end='')
|
| 485 |
+
print(' ', end='')
|
| 486 |
+
print()
|
| 487 |
+
if verbose > 1:
|
| 488 |
+
print('rec(%s):' % fid.encode('utf-8'), end=' ')
|
| 489 |
+
else:
|
| 490 |
+
print('rec:', end=' ')
|
| 491 |
+
rec2 = min(upper_rec, rec1 + max_words_per_line)
|
| 492 |
+
for idx in range(rec1, rec2):
|
| 493 |
+
token = result['rec'][idx]
|
| 494 |
+
print('{token}'.format(token=token), end='')
|
| 495 |
+
for n in range(space['rec'][idx]):
|
| 496 |
+
print(padding_symbol, end='')
|
| 497 |
+
print(' ', end='')
|
| 498 |
+
print('\n', end='\n')
|
| 499 |
+
lab1 = lab2
|
| 500 |
+
rec1 = rec2
|
| 501 |
+
|
| 502 |
+
if verbose:
|
| 503 |
+
print(
|
| 504 |
+
'==========================================================================='
|
| 505 |
+
)
|
| 506 |
+
print()
|
| 507 |
+
|
| 508 |
+
result = calculator.overall()
|
| 509 |
+
if result['all'] != 0:
|
| 510 |
+
wer = float(result['ins'] + result['sub'] +
|
| 511 |
+
result['del']) * 100.0 / result['all']
|
| 512 |
+
else:
|
| 513 |
+
wer = 0.0
|
| 514 |
+
print('Overall -> %4.2f %%' % wer, end=' ')
|
| 515 |
+
print('N=%d C=%d S=%d D=%d I=%d' %
|
| 516 |
+
(result['all'], result['cor'], result['sub'], result['del'],
|
| 517 |
+
result['ins']))
|
| 518 |
+
if not verbose:
|
| 519 |
+
print()
|
| 520 |
+
|
| 521 |
+
if verbose:
|
| 522 |
+
for cluster_id in default_clusters:
|
| 523 |
+
result = calculator.cluster(
|
| 524 |
+
[k for k in default_clusters[cluster_id]])
|
| 525 |
+
if result['all'] != 0:
|
| 526 |
+
wer = float(result['ins'] + result['sub'] +
|
| 527 |
+
result['del']) * 100.0 / result['all']
|
| 528 |
+
else:
|
| 529 |
+
wer = 0.0
|
| 530 |
+
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
|
| 531 |
+
print('N=%d C=%d S=%d D=%d I=%d' %
|
| 532 |
+
(result['all'], result['cor'], result['sub'], result['del'],
|
| 533 |
+
result['ins']))
|
| 534 |
+
if len(cluster_file) > 0: # compute separated WERs for word clusters
|
| 535 |
+
cluster_id = ''
|
| 536 |
+
cluster = []
|
| 537 |
+
for line in open(cluster_file, 'r', encoding='utf-8'):
|
| 538 |
+
for token in line.decode('utf-8').rstrip('\n').split():
|
| 539 |
+
# end of cluster reached, like </Keyword>
|
| 540 |
+
if token[0:2] == '</' and token[len(token)-1] == '>' and \
|
| 541 |
+
token.lstrip('</').rstrip('>') == cluster_id :
|
| 542 |
+
result = calculator.cluster(cluster)
|
| 543 |
+
if result['all'] != 0:
|
| 544 |
+
wer = float(result['ins'] + result['sub'] +
|
| 545 |
+
result['del']) * 100.0 / result['all']
|
| 546 |
+
else:
|
| 547 |
+
wer = 0.0
|
| 548 |
+
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
|
| 549 |
+
print('N=%d C=%d S=%d D=%d I=%d' %
|
| 550 |
+
(result['all'], result['cor'], result['sub'],
|
| 551 |
+
result['del'], result['ins']))
|
| 552 |
+
cluster_id = ''
|
| 553 |
+
cluster = []
|
| 554 |
+
# begin of cluster reached, like <Keyword>
|
| 555 |
+
elif token[0] == '<' and token[len(token)-1] == '>' and \
|
| 556 |
+
cluster_id == '' :
|
| 557 |
+
cluster_id = token.lstrip('<').rstrip('>')
|
| 558 |
+
cluster = []
|
| 559 |
+
# general terms, like WEATHER / CAR / ...
|
| 560 |
+
else:
|
| 561 |
+
cluster.append(token)
|
| 562 |
+
print()
|
| 563 |
+
print(
|
| 564 |
+
'==========================================================================='
|
| 565 |
+
)
|
inference/inference-finetune-lid.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# pip install transformers datasets torch soundfile jiwer
|
| 4 |
+
|
| 5 |
+
from datasets import load_dataset, Audio
|
| 6 |
+
from transformers import pipeline, WhisperProcessor
|
| 7 |
+
from torch.utils.data import DataLoader
|
| 8 |
+
import torch
|
| 9 |
+
from jiwer import wer as jiwer_wer
|
| 10 |
+
from jiwer import cer as jiwer_cer
|
| 11 |
+
import ipdb
|
| 12 |
+
import subprocess
|
| 13 |
+
import os
|
| 14 |
+
|
| 15 |
+
# 1. Load FLEURS Burmese test set, cast to 16 kHz audio
|
| 16 |
+
ds = load_dataset("google/fleurs", "km_kh", split="test", trust_remote_code=True)
|
| 17 |
+
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
|
| 18 |
+
|
| 19 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 23 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 24 |
+
|
| 25 |
+
model_id = "pengyizhou/whisper-fleurs-km_kh-small"
|
| 26 |
+
|
| 27 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 28 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 29 |
+
)
|
| 30 |
+
model.to(device)
|
| 31 |
+
whisper_model = "openai/whisper-large-v3"
|
| 32 |
+
processor = WhisperProcessor.from_pretrained(whisper_model)
|
| 33 |
+
|
| 34 |
+
asr = pipeline(
|
| 35 |
+
"automatic-speech-recognition",
|
| 36 |
+
model=model,
|
| 37 |
+
tokenizer=processor.tokenizer,
|
| 38 |
+
feature_extractor=processor.feature_extractor,
|
| 39 |
+
torch_dtype=torch_dtype,
|
| 40 |
+
chunk_length_s=30,
|
| 41 |
+
batch_size=64,
|
| 42 |
+
max_new_tokens=225,
|
| 43 |
+
device=device,
|
| 44 |
+
num_beams=1, # Use beam search for better quality
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
generate_kwargs = {
|
| 48 |
+
"condition_on_prev_tokens": False,
|
| 49 |
+
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
|
| 50 |
+
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
| 51 |
+
"logprob_threshold": -1.0,
|
| 52 |
+
"language": "khmer", # Specify the language for transcription
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# 3. Batch‐wise transcription function
|
| 57 |
+
def transcribe_batch(batch):
|
| 58 |
+
# `batch["audio"]` is a list of {"array": np.ndarray, ...}
|
| 59 |
+
inputs = [ ex["array"] for ex in batch["audio"] ]
|
| 60 |
+
outputs = asr(inputs, generate_kwargs=generate_kwargs) # returns a list of dicts with "text"
|
| 61 |
+
# lower-case and strip to normalize for CER
|
| 62 |
+
preds = [ out["text"].lower().strip() for out in outputs ]
|
| 63 |
+
return {"prediction": preds}
|
| 64 |
+
|
| 65 |
+
# 4. Map over the dataset in chunks of, say, 32 examples at a time
|
| 66 |
+
result = ds.map(
|
| 67 |
+
transcribe_batch,
|
| 68 |
+
batched=True,
|
| 69 |
+
batch_size=64, # feed 32 audios → pipeline will sub-batch into 8s
|
| 70 |
+
remove_columns=ds.column_names
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# ipdb.set_trace()
|
| 74 |
+
# 5. Compute corpus-level CER with jiwer
|
| 75 |
+
# refs = "\n".join(t.lower().strip() for t in ds["transcription"])
|
| 76 |
+
# preds = "\n".join(t for t in result["prediction"])
|
| 77 |
+
# score = jiwer_cer(refs, preds)
|
| 78 |
+
ids = [key for key in ds["id"]]
|
| 79 |
+
refs = [t.lower().strip() for t in ds["transcription"]]
|
| 80 |
+
preds = [t for t in result["prediction"]]
|
| 81 |
+
score_cer = jiwer_cer(refs, preds)
|
| 82 |
+
score_wer = jiwer_wer(refs, preds)
|
| 83 |
+
|
| 84 |
+
print(f"CER on FLEURS km_kh: {score_cer*100:.2f}%")
|
| 85 |
+
print(f"WER on FLEURS km_kh: {score_wer*100:.2f}%")
|
| 86 |
+
|
| 87 |
+
# Function to add spaces between characters for CER calculation
|
| 88 |
+
def add_char_spaces(text):
|
| 89 |
+
"""Add spaces between each character for character-level evaluation"""
|
| 90 |
+
return ' '.join(list(text.strip()))
|
| 91 |
+
|
| 92 |
+
with open("./km_kh_finetune.pred", "w") as pred_results:
|
| 93 |
+
for key, pred in zip(ids, preds):
|
| 94 |
+
pred_with_spaces = add_char_spaces(pred)
|
| 95 |
+
pred_results.write("{} {}\n".format(key, pred_with_spaces))
|
| 96 |
+
|
| 97 |
+
with open("./km_kh.ref", "w") as ref_results:
|
| 98 |
+
for key, ref in zip(ids, refs):
|
| 99 |
+
ref_with_spaces = add_char_spaces(ref)
|
| 100 |
+
ref_results.write("{} {}\n".format(key, ref_with_spaces))
|
| 101 |
+
|
| 102 |
+
# Generate WER file using compute-wer.py
|
| 103 |
+
print("Generating detailed WER analysis...")
|
| 104 |
+
|
| 105 |
+
# Check if compute-wer.py exists
|
| 106 |
+
compute_wer_script = "./compute-wer.py"
|
| 107 |
+
if not os.path.exists(compute_wer_script):
|
| 108 |
+
# Try to find it in parent directories or common locations
|
| 109 |
+
possible_locations = [
|
| 110 |
+
"./compute-wer.py",
|
| 111 |
+
]
|
| 112 |
+
for location in possible_locations:
|
| 113 |
+
if os.path.exists(location):
|
| 114 |
+
compute_wer_script = location
|
| 115 |
+
break
|
| 116 |
+
else:
|
| 117 |
+
print(f"Warning: compute-wer.py not found. Tried: {[compute_wer_script] + possible_locations}")
|
| 118 |
+
print("Skipping detailed WER analysis.")
|
| 119 |
+
compute_wer_script = None
|
| 120 |
+
|
| 121 |
+
if compute_wer_script:
|
| 122 |
+
try:
|
| 123 |
+
# Run compute-wer.py with character-level analysis
|
| 124 |
+
ref_file = "./km_kh.ref"
|
| 125 |
+
hyp_file = "./km_kh_finetune.pred"
|
| 126 |
+
wer_file = "./km_kh_finetune.wer"
|
| 127 |
+
|
| 128 |
+
cmd = [
|
| 129 |
+
"python", compute_wer_script,
|
| 130 |
+
"--char=1", # Character-level analysis
|
| 131 |
+
"--v=1", # Verbose output
|
| 132 |
+
ref_file,
|
| 133 |
+
hyp_file
|
| 134 |
+
]
|
| 135 |
+
|
| 136 |
+
print(f"Running: {' '.join(cmd)} > {wer_file}")
|
| 137 |
+
|
| 138 |
+
# Run the command and redirect output to wer file
|
| 139 |
+
with open(wer_file, "w") as wer_output:
|
| 140 |
+
result = subprocess.run(
|
| 141 |
+
cmd,
|
| 142 |
+
stdout=wer_output,
|
| 143 |
+
stderr=subprocess.PIPE,
|
| 144 |
+
text=True,
|
| 145 |
+
check=True
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
print(f"CER analysis saved to {wer_file}")
|
| 149 |
+
|
| 150 |
+
# Optionally, print the first few lines of the WER file
|
| 151 |
+
if os.path.exists(wer_file):
|
| 152 |
+
print("\nFirst few lines of WER analysis:")
|
| 153 |
+
with open(wer_file, "r") as f:
|
| 154 |
+
lines = f.readlines()
|
| 155 |
+
for i, line in enumerate(lines[:10]): # Show first 10 lines
|
| 156 |
+
print(f" {line.rstrip()}")
|
| 157 |
+
if len(lines) > 10:
|
| 158 |
+
print(f" ... ({len(lines) - 10} more lines)")
|
| 159 |
+
|
| 160 |
+
except subprocess.CalledProcessError as e:
|
| 161 |
+
print(f"Error running compute-wer.py: {e}")
|
| 162 |
+
if e.stderr:
|
| 163 |
+
print(f"Error details: {e.stderr}")
|
| 164 |
+
except Exception as e:
|
| 165 |
+
print(f"Unexpected error: {e}")
|
| 166 |
+
|
| 167 |
+
print("Inference and CER analysis completed!")
|
| 168 |
+
|
inference/inference-finetune-nolid.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# pip install transformers datasets torch soundfile jiwer
|
| 4 |
+
|
| 5 |
+
from datasets import load_dataset, Audio
|
| 6 |
+
from transformers import pipeline, WhisperProcessor
|
| 7 |
+
from torch.utils.data import DataLoader
|
| 8 |
+
import torch
|
| 9 |
+
from jiwer import wer as jiwer_wer
|
| 10 |
+
from jiwer import cer as jiwer_cer
|
| 11 |
+
import ipdb
|
| 12 |
+
import subprocess
|
| 13 |
+
import os
|
| 14 |
+
|
| 15 |
+
# 1. Load FLEURS Burmese test set, cast to 16 kHz audio
|
| 16 |
+
ds = load_dataset("google/fleurs", "km_kh", split="test", trust_remote_code=True)
|
| 17 |
+
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
|
| 18 |
+
|
| 19 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 23 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 24 |
+
|
| 25 |
+
model_id = "pengyizhou/whisper-fleurs-km_kh-small"
|
| 26 |
+
|
| 27 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 28 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 29 |
+
)
|
| 30 |
+
model.to(device)
|
| 31 |
+
whisper_model = "openai/whisper-large-v3"
|
| 32 |
+
processor = WhisperProcessor.from_pretrained(whisper_model)
|
| 33 |
+
|
| 34 |
+
asr = pipeline(
|
| 35 |
+
"automatic-speech-recognition",
|
| 36 |
+
model=model,
|
| 37 |
+
tokenizer=processor.tokenizer,
|
| 38 |
+
feature_extractor=processor.feature_extractor,
|
| 39 |
+
torch_dtype=torch_dtype,
|
| 40 |
+
chunk_length_s=30,
|
| 41 |
+
batch_size=64,
|
| 42 |
+
max_new_tokens=225,
|
| 43 |
+
device=device,
|
| 44 |
+
num_beams=1, # Use beam search for better quality
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
generate_kwargs = {
|
| 48 |
+
"condition_on_prev_tokens": False,
|
| 49 |
+
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
|
| 50 |
+
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
| 51 |
+
"logprob_threshold": -1.0,
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# 3. Batch‐wise transcription function
|
| 56 |
+
def transcribe_batch(batch):
|
| 57 |
+
# `batch["audio"]` is a list of {"array": np.ndarray, ...}
|
| 58 |
+
inputs = [ ex["array"] for ex in batch["audio"] ]
|
| 59 |
+
outputs = asr(inputs, generate_kwargs=generate_kwargs) # returns a list of dicts with "text"
|
| 60 |
+
# lower-case and strip to normalize for CER
|
| 61 |
+
preds = [ out["text"].lower().strip() for out in outputs ]
|
| 62 |
+
return {"prediction": preds}
|
| 63 |
+
|
| 64 |
+
# 4. Map over the dataset in chunks of, say, 32 examples at a time
|
| 65 |
+
result = ds.map(
|
| 66 |
+
transcribe_batch,
|
| 67 |
+
batched=True,
|
| 68 |
+
batch_size=64, # feed 32 audios → pipeline will sub-batch into 8s
|
| 69 |
+
remove_columns=ds.column_names
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# ipdb.set_trace()
|
| 73 |
+
# 5. Compute corpus-level CER with jiwer
|
| 74 |
+
# refs = "\n".join(t.lower().strip() for t in ds["transcription"])
|
| 75 |
+
# preds = "\n".join(t for t in result["prediction"])
|
| 76 |
+
# score = jiwer_cer(refs, preds)
|
| 77 |
+
ids = [key for key in ds["id"]]
|
| 78 |
+
refs = [t.lower().strip() for t in ds["transcription"]]
|
| 79 |
+
preds = [t for t in result["prediction"]]
|
| 80 |
+
score_cer = jiwer_cer(refs, preds)
|
| 81 |
+
score_wer = jiwer_wer(refs, preds)
|
| 82 |
+
|
| 83 |
+
print(f"CER on FLEURS km_kh: {score_cer*100:.2f}%")
|
| 84 |
+
print(f"WER on FLEURS km_kh: {score_wer*100:.2f}%")
|
| 85 |
+
|
| 86 |
+
# Function to add spaces between characters for CER calculation
|
| 87 |
+
def add_char_spaces(text):
|
| 88 |
+
"""Add spaces between each character for character-level evaluation"""
|
| 89 |
+
return ' '.join(list(text.strip()))
|
| 90 |
+
|
| 91 |
+
with open("./km_kh_finetune_nolid.pred", "w") as pred_results:
|
| 92 |
+
for key, pred in zip(ids, preds):
|
| 93 |
+
pred_with_spaces = add_char_spaces(pred)
|
| 94 |
+
pred_results.write("{} {}\n".format(key, pred_with_spaces))
|
| 95 |
+
|
| 96 |
+
with open("./km_kh.ref", "w") as ref_results:
|
| 97 |
+
for key, ref in zip(ids, refs):
|
| 98 |
+
ref_with_spaces = add_char_spaces(ref)
|
| 99 |
+
ref_results.write("{} {}\n".format(key, ref_with_spaces))
|
| 100 |
+
|
| 101 |
+
# Generate WER file using compute-wer.py
|
| 102 |
+
print("Generating detailed WER analysis...")
|
| 103 |
+
|
| 104 |
+
# Check if compute-wer.py exists
|
| 105 |
+
compute_wer_script = "./compute-wer.py"
|
| 106 |
+
if not os.path.exists(compute_wer_script):
|
| 107 |
+
# Try to find it in parent directories or common locations
|
| 108 |
+
possible_locations = [
|
| 109 |
+
"./compute-wer.py",
|
| 110 |
+
]
|
| 111 |
+
for location in possible_locations:
|
| 112 |
+
if os.path.exists(location):
|
| 113 |
+
compute_wer_script = location
|
| 114 |
+
break
|
| 115 |
+
else:
|
| 116 |
+
print(f"Warning: compute-wer.py not found. Tried: {[compute_wer_script] + possible_locations}")
|
| 117 |
+
print("Skipping detailed WER analysis.")
|
| 118 |
+
compute_wer_script = None
|
| 119 |
+
|
| 120 |
+
if compute_wer_script:
|
| 121 |
+
try:
|
| 122 |
+
# Run compute-wer.py with character-level analysis
|
| 123 |
+
ref_file = "./km_kh.ref"
|
| 124 |
+
hyp_file = "./km_kh_finetune_nolid.pred"
|
| 125 |
+
wer_file = "./km_kh_finetune_nolid.wer"
|
| 126 |
+
|
| 127 |
+
cmd = [
|
| 128 |
+
"python", compute_wer_script,
|
| 129 |
+
"--char=1", # Character-level analysis
|
| 130 |
+
"--v=1", # Verbose output
|
| 131 |
+
ref_file,
|
| 132 |
+
hyp_file
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
print(f"Running: {' '.join(cmd)} > {wer_file}")
|
| 136 |
+
|
| 137 |
+
# Run the command and redirect output to wer file
|
| 138 |
+
with open(wer_file, "w") as wer_output:
|
| 139 |
+
result = subprocess.run(
|
| 140 |
+
cmd,
|
| 141 |
+
stdout=wer_output,
|
| 142 |
+
stderr=subprocess.PIPE,
|
| 143 |
+
text=True,
|
| 144 |
+
check=True
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
print(f"CER analysis saved to {wer_file}")
|
| 148 |
+
|
| 149 |
+
# Optionally, print the first few lines of the WER file
|
| 150 |
+
if os.path.exists(wer_file):
|
| 151 |
+
print("\nFirst few lines of WER analysis:")
|
| 152 |
+
with open(wer_file, "r") as f:
|
| 153 |
+
lines = f.readlines()
|
| 154 |
+
for i, line in enumerate(lines[:10]): # Show first 10 lines
|
| 155 |
+
print(f" {line.rstrip()}")
|
| 156 |
+
if len(lines) > 10:
|
| 157 |
+
print(f" ... ({len(lines) - 10} more lines)")
|
| 158 |
+
|
| 159 |
+
except subprocess.CalledProcessError as e:
|
| 160 |
+
print(f"Error running compute-wer.py: {e}")
|
| 161 |
+
if e.stderr:
|
| 162 |
+
print(f"Error details: {e.stderr}")
|
| 163 |
+
except Exception as e:
|
| 164 |
+
print(f"Unexpected error: {e}")
|
| 165 |
+
|
| 166 |
+
print("Inference and CER analysis completed!")
|
| 167 |
+
|
inference/inference-ft.sh
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
python ./inference-finetune-lid.py
|
| 4 |
+
python ./inference-finetune-nolid.py
|
inference/inference-zeroshot-nolid.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# pip install transformers datasets torch soundfile jiwer
|
| 4 |
+
|
| 5 |
+
from datasets import load_dataset, Audio
|
| 6 |
+
from transformers import pipeline, WhisperProcessor
|
| 7 |
+
from torch.utils.data import DataLoader
|
| 8 |
+
import torch
|
| 9 |
+
from jiwer import wer as jiwer_wer
|
| 10 |
+
from jiwer import cer as jiwer_cer
|
| 11 |
+
import ipdb
|
| 12 |
+
import subprocess
|
| 13 |
+
import os
|
| 14 |
+
|
| 15 |
+
# 1. Load FLEURS Burmese test set, cast to 16 kHz audio
|
| 16 |
+
ds = load_dataset("google/fleurs", "km_kh", split="test")
|
| 17 |
+
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
|
| 18 |
+
|
| 19 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 23 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 24 |
+
|
| 25 |
+
model_id = "openai/whisper-large-v3"
|
| 26 |
+
|
| 27 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 28 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 29 |
+
)
|
| 30 |
+
model.to(device)
|
| 31 |
+
whisper_model = "openai/whisper-large-v3"
|
| 32 |
+
processor = WhisperProcessor.from_pretrained(whisper_model, language="khmer")
|
| 33 |
+
|
| 34 |
+
asr = pipeline(
|
| 35 |
+
"automatic-speech-recognition",
|
| 36 |
+
model=model,
|
| 37 |
+
tokenizer=processor.tokenizer,
|
| 38 |
+
feature_extractor=processor.feature_extractor,
|
| 39 |
+
torch_dtype=torch_dtype,
|
| 40 |
+
chunk_length_s=30,
|
| 41 |
+
batch_size=64,
|
| 42 |
+
max_new_tokens=225,
|
| 43 |
+
device=device,
|
| 44 |
+
num_beams=1, # Use beam search for better quality
|
| 45 |
+
)
|
| 46 |
+
generate_kwargs = {
|
| 47 |
+
"condition_on_prev_tokens": False,
|
| 48 |
+
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
|
| 49 |
+
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
| 50 |
+
"logprob_threshold": -1.0,
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
# 3. Batch‐wise transcription function
|
| 54 |
+
def transcribe_batch(batch):
|
| 55 |
+
# `batch["audio"]` is a list of {"array": np.ndarray, ...}
|
| 56 |
+
inputs = [ ex["array"] for ex in batch["audio"] ]
|
| 57 |
+
outputs = asr(inputs, generate_kwargs=generate_kwargs) # returns a list of dicts with "text"
|
| 58 |
+
# lower-case and strip to normalize for CER
|
| 59 |
+
preds = [ out["text"].lower().strip() for out in outputs ]
|
| 60 |
+
return {"prediction": preds}
|
| 61 |
+
|
| 62 |
+
# 4. Map over the dataset in chunks of, say, 32 examples at a time
|
| 63 |
+
result = ds.map(
|
| 64 |
+
transcribe_batch,
|
| 65 |
+
batched=True,
|
| 66 |
+
batch_size=64, # feed 64 audios → pipeline will sub-batch into 8s
|
| 67 |
+
remove_columns=ds.column_names
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# ipdb.set_trace()
|
| 71 |
+
# 5. Compute corpus-level CER with jiwer
|
| 72 |
+
# refs = "\n".join(t.lower().strip() for t in ds["transcription"])
|
| 73 |
+
# preds = "\n".join(t for t in result["prediction"])
|
| 74 |
+
# score = jiwer_cer(refs, preds)
|
| 75 |
+
ids = [key for key in ds["id"]]
|
| 76 |
+
refs = [t.lower().strip() for t in ds["transcription"]]
|
| 77 |
+
preds = [t for t in result["prediction"]]
|
| 78 |
+
score_cer = jiwer_cer(refs, preds)
|
| 79 |
+
score_wer = jiwer_wer(refs, preds)
|
| 80 |
+
|
| 81 |
+
print(f"CER on FLEURS km_kh: {score_cer*100:.2f}%")
|
| 82 |
+
print(f"WER on FLEURS km_kh: {score_wer*100:.2f}%")
|
| 83 |
+
# Function to add spaces between characters for CER calculation
|
| 84 |
+
def add_char_spaces(text):
|
| 85 |
+
"""Add spaces between each character for character-level evaluation"""
|
| 86 |
+
return ' '.join(list(text.strip()))
|
| 87 |
+
|
| 88 |
+
with open("./km_kh_zs_nolid.pred", "w") as pred_results:
|
| 89 |
+
for key, pred in zip(ids, preds):
|
| 90 |
+
pred_with_spaces = add_char_spaces(pred)
|
| 91 |
+
pred_results.write("{} {}\n".format(key, pred_with_spaces))
|
| 92 |
+
|
| 93 |
+
with open("./km_kh.ref", "w") as ref_results:
|
| 94 |
+
for key, ref in zip(ids, refs):
|
| 95 |
+
ref_with_spaces = add_char_spaces(ref)
|
| 96 |
+
ref_results.write("{} {}\n".format(key, ref_with_spaces))
|
| 97 |
+
|
| 98 |
+
# Generate WER file using compute-wer.py
|
| 99 |
+
print("Generating detailed WER analysis...")
|
| 100 |
+
|
| 101 |
+
# Check if compute-wer.py exists
|
| 102 |
+
compute_wer_script = "./compute-wer.py"
|
| 103 |
+
if not os.path.exists(compute_wer_script):
|
| 104 |
+
# Try to find it in parent directories or common locations
|
| 105 |
+
possible_locations = [
|
| 106 |
+
"./compute-wer.py",
|
| 107 |
+
]
|
| 108 |
+
for location in possible_locations:
|
| 109 |
+
if os.path.exists(location):
|
| 110 |
+
compute_wer_script = location
|
| 111 |
+
break
|
| 112 |
+
else:
|
| 113 |
+
print(f"Warning: compute-wer.py not found. Tried: {[compute_wer_script] + possible_locations}")
|
| 114 |
+
print("Skipping detailed WER analysis.")
|
| 115 |
+
compute_wer_script = None
|
| 116 |
+
|
| 117 |
+
if compute_wer_script:
|
| 118 |
+
try:
|
| 119 |
+
# Run compute-wer.py with character-level analysis
|
| 120 |
+
ref_file = "./km_kh.ref"
|
| 121 |
+
hyp_file = "./km_kh_zs_nolid.pred"
|
| 122 |
+
wer_file = "./km_kh_zs_nolid.wer"
|
| 123 |
+
|
| 124 |
+
cmd = [
|
| 125 |
+
"python", compute_wer_script,
|
| 126 |
+
"--char=1", # Character-level analysis
|
| 127 |
+
"--v=1", # Verbose output
|
| 128 |
+
ref_file,
|
| 129 |
+
hyp_file
|
| 130 |
+
]
|
| 131 |
+
|
| 132 |
+
print(f"Running: {' '.join(cmd)} > {wer_file}")
|
| 133 |
+
|
| 134 |
+
# Run the command and redirect output to wer file
|
| 135 |
+
with open(wer_file, "w") as wer_output:
|
| 136 |
+
result = subprocess.run(
|
| 137 |
+
cmd,
|
| 138 |
+
stdout=wer_output,
|
| 139 |
+
stderr=subprocess.PIPE,
|
| 140 |
+
text=True,
|
| 141 |
+
check=True
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
print(f"CER analysis saved to {wer_file}")
|
| 145 |
+
|
| 146 |
+
# Optionally, print the first few lines of the WER file
|
| 147 |
+
if os.path.exists(wer_file):
|
| 148 |
+
print("\nFirst few lines of WER analysis:")
|
| 149 |
+
with open(wer_file, "r") as f:
|
| 150 |
+
lines = f.readlines()
|
| 151 |
+
for i, line in enumerate(lines[:10]): # Show first 10 lines
|
| 152 |
+
print(f" {line.rstrip()}")
|
| 153 |
+
if len(lines) > 10:
|
| 154 |
+
print(f" ... ({len(lines) - 10} more lines)")
|
| 155 |
+
|
| 156 |
+
except subprocess.CalledProcessError as e:
|
| 157 |
+
print(f"Error running compute-wer.py: {e}")
|
| 158 |
+
if e.stderr:
|
| 159 |
+
print(f"Error details: {e.stderr}")
|
| 160 |
+
except Exception as e:
|
| 161 |
+
print(f"Unexpected error: {e}")
|
| 162 |
+
|
| 163 |
+
print("Inference and CER analysis completed!")
|
| 164 |
+
|
inference/inference-zeroshot.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# pip install transformers datasets torch soundfile jiwer
|
| 4 |
+
|
| 5 |
+
from datasets import load_dataset, Audio
|
| 6 |
+
from transformers import pipeline, WhisperProcessor
|
| 7 |
+
from torch.utils.data import DataLoader
|
| 8 |
+
import torch
|
| 9 |
+
from jiwer import wer as jiwer_wer
|
| 10 |
+
from jiwer import cer as jiwer_cer
|
| 11 |
+
import ipdb
|
| 12 |
+
import subprocess
|
| 13 |
+
import os
|
| 14 |
+
|
| 15 |
+
# 1. Load FLEURS Burmese test set, cast to 16 kHz audio
|
| 16 |
+
ds = load_dataset("google/fleurs", "km_kh", split="test")
|
| 17 |
+
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
|
| 18 |
+
|
| 19 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 23 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 24 |
+
|
| 25 |
+
model_id = "openai/whisper-large-v3"
|
| 26 |
+
|
| 27 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 28 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 29 |
+
)
|
| 30 |
+
model.to(device)
|
| 31 |
+
whisper_model = "openai/whisper-large-v3"
|
| 32 |
+
processor = WhisperProcessor.from_pretrained(whisper_model, language="khmer")
|
| 33 |
+
|
| 34 |
+
asr = pipeline(
|
| 35 |
+
"automatic-speech-recognition",
|
| 36 |
+
model=model,
|
| 37 |
+
tokenizer=processor.tokenizer,
|
| 38 |
+
feature_extractor=processor.feature_extractor,
|
| 39 |
+
torch_dtype=torch_dtype,
|
| 40 |
+
chunk_length_s=30,
|
| 41 |
+
batch_size=64,
|
| 42 |
+
max_new_tokens=225,
|
| 43 |
+
device=device,
|
| 44 |
+
num_beams=1, # Use beam search for better quality
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
generate_kwargs = {
|
| 48 |
+
"condition_on_prev_tokens": False,
|
| 49 |
+
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
|
| 50 |
+
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
| 51 |
+
"logprob_threshold": -1.0,
|
| 52 |
+
"language": "khmer", # Specify the language for transcription
|
| 53 |
+
}
|
| 54 |
+
# 3. Batch‐wise transcription function
|
| 55 |
+
def transcribe_batch(batch):
|
| 56 |
+
# `batch["audio"]` is a list of {"array": np.ndarray, ...}
|
| 57 |
+
inputs = [ ex["array"] for ex in batch["audio"] ]
|
| 58 |
+
outputs = asr(inputs, generate_kwargs=generate_kwargs) # returns a list of dicts with "text"
|
| 59 |
+
# lower-case and strip to normalize for CER
|
| 60 |
+
preds = [ out["text"].lower().strip() for out in outputs ]
|
| 61 |
+
return {"prediction": preds}
|
| 62 |
+
|
| 63 |
+
# 4. Map over the dataset in chunks of, say, 32 examples at a time
|
| 64 |
+
result = ds.map(
|
| 65 |
+
transcribe_batch,
|
| 66 |
+
batched=True,
|
| 67 |
+
batch_size=64, # feed 32 audios → pipeline will sub-batch into 8s
|
| 68 |
+
remove_columns=ds.column_names
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# ipdb.set_trace()
|
| 72 |
+
# 5. Compute corpus-level CER with jiwer
|
| 73 |
+
# refs = "\n".join(t.lower().strip() for t in ds["transcription"])
|
| 74 |
+
# preds = "\n".join(t for t in result["prediction"])
|
| 75 |
+
# score = jiwer_cer(refs, preds)
|
| 76 |
+
ids = [key for key in ds["id"]]
|
| 77 |
+
refs = [t.lower().strip() for t in ds["transcription"]]
|
| 78 |
+
preds = [t for t in result["prediction"]]
|
| 79 |
+
score_cer = jiwer_cer(refs, preds)
|
| 80 |
+
score_wer = jiwer_wer(refs, preds)
|
| 81 |
+
|
| 82 |
+
print(f"CER on FLEURS km_kh: {score_cer*100:.2f}%")
|
| 83 |
+
print(f"WER on FLEURS km_kh: {score_wer*100:.2f}%")
|
| 84 |
+
|
| 85 |
+
# Function to add spaces between characters for CER calculation
|
| 86 |
+
def add_char_spaces(text):
|
| 87 |
+
"""Add spaces between each character for character-level evaluation"""
|
| 88 |
+
return ' '.join(list(text.strip()))
|
| 89 |
+
|
| 90 |
+
with open("./km_kh_zs_lid.pred", "w") as pred_results:
|
| 91 |
+
for key, pred in zip(ids, preds):
|
| 92 |
+
pred_with_spaces = add_char_spaces(pred)
|
| 93 |
+
pred_results.write("{} {}\n".format(key, pred_with_spaces))
|
| 94 |
+
|
| 95 |
+
with open("./km_kh.ref", "w") as ref_results:
|
| 96 |
+
for key, ref in zip(ids, refs):
|
| 97 |
+
ref_with_spaces = add_char_spaces(ref)
|
| 98 |
+
ref_results.write("{} {}\n".format(key, ref_with_spaces))
|
| 99 |
+
|
| 100 |
+
# Generate WER file using compute-wer.py
|
| 101 |
+
print("Generating detailed WER analysis...")
|
| 102 |
+
|
| 103 |
+
# Check if compute-wer.py exists
|
| 104 |
+
compute_wer_script = "./compute-wer.py"
|
| 105 |
+
if not os.path.exists(compute_wer_script):
|
| 106 |
+
# Try to find it in parent directories or common locations
|
| 107 |
+
possible_locations = [
|
| 108 |
+
"./compute-wer.py",
|
| 109 |
+
]
|
| 110 |
+
for location in possible_locations:
|
| 111 |
+
if os.path.exists(location):
|
| 112 |
+
compute_wer_script = location
|
| 113 |
+
break
|
| 114 |
+
else:
|
| 115 |
+
print(f"Warning: compute-wer.py not found. Tried: {[compute_wer_script] + possible_locations}")
|
| 116 |
+
print("Skipping detailed WER analysis.")
|
| 117 |
+
compute_wer_script = None
|
| 118 |
+
|
| 119 |
+
if compute_wer_script:
|
| 120 |
+
try:
|
| 121 |
+
# Run compute-wer.py with character-level analysis
|
| 122 |
+
ref_file = "./km_kh.ref"
|
| 123 |
+
hyp_file = "./km_kh_zs_lid.pred"
|
| 124 |
+
wer_file = "./km_kh_zs_lid.wer"
|
| 125 |
+
|
| 126 |
+
cmd = [
|
| 127 |
+
"python", compute_wer_script,
|
| 128 |
+
"--char=1", # Character-level analysis
|
| 129 |
+
"--v=1", # Verbose output
|
| 130 |
+
ref_file,
|
| 131 |
+
hyp_file
|
| 132 |
+
]
|
| 133 |
+
|
| 134 |
+
print(f"Running: {' '.join(cmd)} > {wer_file}")
|
| 135 |
+
|
| 136 |
+
# Run the command and redirect output to wer file
|
| 137 |
+
with open(wer_file, "w") as wer_output:
|
| 138 |
+
result = subprocess.run(
|
| 139 |
+
cmd,
|
| 140 |
+
stdout=wer_output,
|
| 141 |
+
stderr=subprocess.PIPE,
|
| 142 |
+
text=True,
|
| 143 |
+
check=True
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
print(f"CER analysis saved to {wer_file}")
|
| 147 |
+
|
| 148 |
+
# Optionally, print the first few lines of the WER file
|
| 149 |
+
if os.path.exists(wer_file):
|
| 150 |
+
print("\nFirst few lines of WER analysis:")
|
| 151 |
+
with open(wer_file, "r") as f:
|
| 152 |
+
lines = f.readlines()
|
| 153 |
+
for i, line in enumerate(lines[:10]): # Show first 10 lines
|
| 154 |
+
print(f" {line.rstrip()}")
|
| 155 |
+
if len(lines) > 10:
|
| 156 |
+
print(f" ... ({len(lines) - 10} more lines)")
|
| 157 |
+
|
| 158 |
+
except subprocess.CalledProcessError as e:
|
| 159 |
+
print(f"Error running compute-wer.py: {e}")
|
| 160 |
+
if e.stderr:
|
| 161 |
+
print(f"Error details: {e.stderr}")
|
| 162 |
+
except Exception as e:
|
| 163 |
+
print(f"Unexpected error: {e}")
|
| 164 |
+
|
| 165 |
+
print("Inference and CER analysis completed!")
|
inference/inference-zs.sh
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
python ./inference-zeroshot.py
|
| 4 |
+
python ./inference-zeroshot-nolid.py
|
| 5 |
+
python ./inference.py
|
inference/km_kh.ref
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
inference/km_kh_finetune.pred
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
inference/km_kh_finetune.wer
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
inference/km_kh_finetune_nolid.pred
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
inference/km_kh_finetune_nolid.wer
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
inference/km_kh_zs_lid.pred
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
inference/km_kh_zs_lid.wer
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
inference/km_kh_zs_nolid.pred
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
inference/km_kh_zs_nolid.wer
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|