qingy2024 commited on
Commit
0aecc77
·
verified ·
1 Parent(s): a5811d4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +201 -3
README.md CHANGED
@@ -1,3 +1,201 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - qingy2024/PR2-SFT
5
+ language:
6
+ - en
7
+ base_model:
8
+ - Qwen/Qwen2.5-14B-Instruct
9
+ ---
10
+
11
+ ## PR2 14B Instruct (LoRA adapters)
12
+
13
+ PR2 is an experimental fine tune of Qwen2.5 14B Instruct, incorporating planning and reasoning before outputting a final answer.
14
+
15
+ **Example:**
16
+
17
+ Input: Find the minimum value of the expression \\(\left(\sqrt{2(1+\cos 2 x)}-\sqrt{36-4 \sqrt{5}} \sin x+2\right) \cdot \left(3+2 \sqrt{10-\sqrt{5}} \cos y-\cos 2 y\right)\\). If the answer is not an integer, round it to the nearest integer.
18
+
19
+ Output:
20
+
21
+ ```
22
+ <plan>
23
+ 1. Simplify the expression by breaking it down into manageable parts.
24
+ 2. Use trigonometric identities to simplify terms involving trigonometric functions.
25
+ 3. Analyze the structure of the expression to identify potential optimization strategies.
26
+ 4. Consider the possibility of minimizing each part of the expression separately.
27
+ 5. Calculate the minimum value of the entire expression and round it to the nearest integer if necessary.
28
+ </plan>
29
+
30
+ <think>
31
+ Hmm... let me start by simplifying the expression. The expression is:
32
+
33
+ \[
34
+ \left(\sqrt{2(1+\cos 2x)} - \sqrt{36-4\sqrt{5}} \sin x + 2\right) \cdot \left(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\right)
35
+ \]
36
+
37
+ First, I notice that \(\sqrt{2(1+\cos 2x)}\) can be simplified using a trigonometric identity. Recall that \(1 + \cos 2x = 2\cos^2 x\), so:
38
+
39
+ \[
40
+ \sqrt{2(1+\cos 2x)} = \sqrt{2 \cdot 2\cos^2 x} = \sqrt{4\cos^2 x} = 2|\cos x|
41
+ \]
42
+
43
+ Since \(\cos x\) can be positive or negative, we'll keep it as \(2|\cos x|\) for now.
44
+
45
+ Next, let's look at the second part of the first factor: \(-\sqrt{36-4\sqrt{5}} \sin x + 2\). This seems a bit complicated, but perhaps we can find a way to simplify or bound it.
46
+
47
+ Now, let's consider the second factor: \(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\). Again, we can use trigonometric identities to simplify \(\cos 2y\). Recall that \(\cos 2y = 2\cos^2 y - 1\), so:
48
+
49
+ \[
50
+ 3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y = 3 + 2\sqrt{10-\sqrt{5}} \cos y - (2\cos^2 y - 1) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
51
+ \]
52
+
53
+ This is a quadratic in terms of \(\cos y\), so we might be able to find its minimum value.
54
+
55
+ Wait, perhaps it's better to think about minimizing each factor separately and then multiply the minima together. Let's try that.
56
+
57
+ First, let's find the minimum of the first factor:
58
+
59
+ \[
60
+ F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2
61
+ \]
62
+
63
+ This seems complicated due to the absolute value and the trigonometric functions. Maybe we can express it in terms of a single trigonometric function.
64
+
65
+ Alternatively, perhaps we can use calculus to find the minimum of \(F_1(x)\). Let's try that.
66
+
67
+ Let's consider \(F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2\). To find the minimum, we can take the derivative and set it to zero.
68
+
69
+ However, the absolute value makes this tricky. Perhaps we can consider the cases where \(\cos x\) is positive and negative separately.
70
+
71
+ Case 1: \(\cos x \geq 0\)
72
+
73
+ Then \(F_1(x) = 2\cos x - \sqrt{36-4\sqrt{5}} \sin x + 2\). Taking the derivative with respect to \(x\):
74
+
75
+ \[
76
+ F_1'(x) = -2\sin x - \sqrt{36-4\sqrt{5}} \cos x
77
+ \]
78
+
79
+ Setting \(F_1'(x) = 0\):
80
+
81
+ \[
82
+ -2\sin x - \sqrt{36-4\sqrt{5}} \cos x = 0 \implies -2\sin x = \sqrt{36-4\sqrt{5}} \cos x \implies \tan x = -\frac{\sqrt{36-4\sqrt{5}}}{2}
83
+ \]
84
+
85
+ This gives us a critical point, but we need to check if it's a minimum.
86
+
87
+ Alternatively, perhaps we can use trigonometric identities to express \(F_1(x)\) as a single trigonometric function.
88
+
89
+ Recall that \(A\sin x + B\cos x = R\sin(x + \alpha)\), where \(R = \sqrt{A^2 + B^2}\) and \(\tan \alpha = \frac{B}{A}\).
90
+
91
+ In our case, \(A = -\sqrt{36-4\sqrt{5}}\) and \(B = 2\), so:
92
+
93
+ \[
94
+ R = \sqrt{(-\sqrt{36-4\sqrt{5}})^2 + 2^2} = \sqrt{36-4\sqrt{5} + 4} = \sqrt{40-4\sqrt{5}} = 2\sqrt{10-\sqrt{5}}
95
+ \]
96
+
97
+ So, \(F_1(x) = 2\sqrt{10-\sqrt{5}} \sin(x + \alpha) + 2\).
98
+
99
+ The minimum value of \(\sin(x + \alpha)\) is \(-1\), so the minimum of \(F_1(x)\) is:
100
+
101
+ \[
102
+ 2\sqrt{10-\sqrt{5}} \cdot (-1) + 2 = -2\sqrt{10-\sqrt{5}} + 2
103
+ \]
104
+
105
+ Now, let's find the minimum of the second factor:
106
+
107
+ \[
108
+ F_2(y) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
109
+ \]
110
+
111
+ This is a quadratic in \(\cos y\). Let \(z = \cos y\), then:
112
+
113
+ \[
114
+ F_2(y) = -2z^2 + 2\sqrt{10-\sqrt{5}} z + 4
115
+ \]
116
+
117
+ This is a quadratic equation in \(z\), and since the coefficient of \(z^2\) is negative, it has a maximum value. However, we need the minimum value of \(F_2(y)\). The minimum will occur at the boundaries of \(z\), i.e., when \(z = 1\) or \(z = -1\).
118
+
119
+ Let's evaluate \(F_2(y)\) at \(z = 1\) and \(z = -1\).
120
+
121
+ At \(z = 1\):
122
+
123
+ \[
124
+ F_2(y) = -2(1)^2 + 2\sqrt{10-\sqrt{5}} (1) + 4 = -2 + 2\sqrt{10-\sqrt{5}} + 4 = 2 + 2\sqrt{10-\sqrt{5}}
125
+ \]
126
+
127
+ At \(z = -1\):
128
+
129
+ \[
130
+ F_2(y) = -2(-1)^2 + 2\sqrt{10-\sqrt{5}} (-1) + 4 = -2 - 2\sqrt{10-\sqrt{5}} + 4 = 2 - 2\sqrt{10-\sqrt{5}}
131
+ \]
132
+
133
+ Since \(\sqrt{10-\sqrt{5}} > 0\), the minimum value of \(F_2(y)\) is \(2 - 2\sqrt{10-\sqrt{5}}\).
134
+
135
+ Now, the minimum value of the entire expression is the product of the minima of \(F_1(x)\) and \(F_2(y)\):
136
+
137
+ \[
138
+ (-2\sqrt{10-\sqrt{5}} + 2) \cdot (2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}})
139
+ \]
140
+
141
+ Let's compute this product:
142
+
143
+ \[
144
+ (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} \cdot 2) + (-2\sqrt{10-\sqrt{5}} \cdot -2\sqrt{10-\sqrt{5}}) + (2 \cdot 2) + (2 \cdot -2\sqrt{10-\sqrt{5}})
145
+ \]
146
+
147
+ Simplifying each term:
148
+
149
+ \[
150
+ = -4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 - 4\sqrt{10-\sqrt{5}}
151
+ \]
152
+
153
+ Combine like terms:
154
+
155
+ \[
156
+ = -4\sqrt{10-\sqrt{5}} - 4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 = -8\sqrt{10-\sqrt{5}} + 40 - 4\sqrt{5} + 4 = -8\sqrt{10-\sqrt{5}} + 44 - 4\sqrt{5}
157
+ \]
158
+
159
+ This expression is quite complicated, and calculating its exact value might not be straightforward. However, we can approximate the value.
160
+
161
+ First, let's approximate \(\sqrt{10 - \sqrt{5}}\). Since \(\sqrt{5} \approx 2.236\), we have:
162
+
163
+ \[
164
+ \sqrt{10 - 2.236} = \sqrt{7.764} \approx 2.786
165
+ \]
166
+
167
+ Similarly, \(\sqrt{5} \approx 2.236\).
168
+
169
+ Now, let's approximate the expression:
170
+
171
+ \[
172
+ -8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
173
+ \]
174
+
175
+ Rounding this to the nearest integer gives us 13.
176
+
177
+ Wait, let's double-check the calculations to ensure accuracy.
178
+
179
+ First, let's compute \(\sqrt{10 - \sqrt{5}}\) more precisely.
180
+
181
+ \(\sqrt{5} \approx 2.2360679775\), so:
182
+
183
+ \[
184
+ \sqrt{10 - 2.2360679775} = \sqrt{7.7639320225} \approx 2.786
185
+ \]
186
+
187
+ Now, compute the expression:
188
+
189
+ \[
190
+ -8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
191
+ \]
192
+
193
+ Rounding 12.768 to the nearest integer gives us 13.
194
+
195
+ Thus, the minimum value of the expression is approximately 13.
196
+ </think>
197
+
198
+ <answer>
199
+ \boxed{13}
200
+ </answer>
201
+ ```