Improve language tag (#1)
Browse files- Improve language tag (a72cd768163fddbb75275ed463c778195a283c39)
Co-authored-by: Loïck BOURDOIS <lbourdois@users.noreply.huggingface.co>
README.md
CHANGED
|
@@ -1,201 +1,213 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
datasets:
|
| 4 |
-
- qingy2024/PR2-SFT
|
| 5 |
-
language:
|
| 6 |
-
-
|
| 7 |
-
|
| 8 |
-
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
\
|
| 50 |
-
|
| 51 |
-
\
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
\
|
| 60 |
-
|
| 61 |
-
\
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
\
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
\
|
| 82 |
-
|
| 83 |
-
\
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
\[
|
| 94 |
-
|
| 95 |
-
\]
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
\
|
| 102 |
-
|
| 103 |
-
\
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
\
|
| 108 |
-
|
| 109 |
-
\
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
\[
|
| 114 |
-
|
| 115 |
-
\]
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
\
|
| 124 |
-
|
| 125 |
-
\
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
\
|
| 130 |
-
|
| 131 |
-
\
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
\
|
| 138 |
-
|
| 139 |
-
\
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
\
|
| 144 |
-
|
| 145 |
-
\
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
\[
|
| 150 |
-
|
| 151 |
-
\]
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
\[
|
| 156 |
-
|
| 157 |
-
\]
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
\
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
\
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
\[
|
| 184 |
-
\
|
| 185 |
-
\]
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
\
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- qingy2024/PR2-SFT
|
| 5 |
+
language:
|
| 6 |
+
- zho
|
| 7 |
+
- eng
|
| 8 |
+
- fra
|
| 9 |
+
- spa
|
| 10 |
+
- por
|
| 11 |
+
- deu
|
| 12 |
+
- ita
|
| 13 |
+
- rus
|
| 14 |
+
- jpn
|
| 15 |
+
- kor
|
| 16 |
+
- vie
|
| 17 |
+
- tha
|
| 18 |
+
- ara
|
| 19 |
+
base_model:
|
| 20 |
+
- Qwen/Qwen2.5-14B-Instruct
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
## PR2 14B Instruct (LoRA adapters)
|
| 24 |
+
|
| 25 |
+
PR2 is an experimental fine tune of Qwen2.5 14B Instruct, incorporating planning and reasoning before outputting a final answer. It is trained for 2 epochs on the verified subset of qingy2024/PR2-SFT.
|
| 26 |
+
|
| 27 |
+
**Example:**
|
| 28 |
+
|
| 29 |
+
Input: Find the minimum value of the expression \\(\left(\sqrt{2(1+\cos 2 x)}-\sqrt{36-4 \sqrt{5}} \sin x+2\right) \cdot \left(3+2 \sqrt{10-\sqrt{5}} \cos y-\cos 2 y\right)\\). If the answer is not an integer, round it to the nearest integer.
|
| 30 |
+
|
| 31 |
+
Output:
|
| 32 |
+
|
| 33 |
+
```
|
| 34 |
+
<plan>
|
| 35 |
+
1. Simplify the expression by breaking it down into manageable parts.
|
| 36 |
+
2. Use trigonometric identities to simplify terms involving trigonometric functions.
|
| 37 |
+
3. Analyze the structure of the expression to identify potential optimization strategies.
|
| 38 |
+
4. Consider the possibility of minimizing each part of the expression separately.
|
| 39 |
+
5. Calculate the minimum value of the entire expression and round it to the nearest integer if necessary.
|
| 40 |
+
</plan>
|
| 41 |
+
|
| 42 |
+
<think>
|
| 43 |
+
Hmm... let me start by simplifying the expression. The expression is:
|
| 44 |
+
|
| 45 |
+
\[
|
| 46 |
+
\left(\sqrt{2(1+\cos 2x)} - \sqrt{36-4\sqrt{5}} \sin x + 2\right) \cdot \left(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\right)
|
| 47 |
+
\]
|
| 48 |
+
|
| 49 |
+
First, I notice that \(\sqrt{2(1+\cos 2x)}\) can be simplified using a trigonometric identity. Recall that \(1 + \cos 2x = 2\cos^2 x\), so:
|
| 50 |
+
|
| 51 |
+
\[
|
| 52 |
+
\sqrt{2(1+\cos 2x)} = \sqrt{2 \cdot 2\cos^2 x} = \sqrt{4\cos^2 x} = 2|\cos x|
|
| 53 |
+
\]
|
| 54 |
+
|
| 55 |
+
Since \(\cos x\) can be positive or negative, we'll keep it as \(2|\cos x|\) for now.
|
| 56 |
+
|
| 57 |
+
Next, let's look at the second part of the first factor: \(-\sqrt{36-4\sqrt{5}} \sin x + 2\). This seems a bit complicated, but perhaps we can find a way to simplify or bound it.
|
| 58 |
+
|
| 59 |
+
Now, let's consider the second factor: \(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\). Again, we can use trigonometric identities to simplify \(\cos 2y\). Recall that \(\cos 2y = 2\cos^2 y - 1\), so:
|
| 60 |
+
|
| 61 |
+
\[
|
| 62 |
+
3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y = 3 + 2\sqrt{10-\sqrt{5}} \cos y - (2\cos^2 y - 1) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
|
| 63 |
+
\]
|
| 64 |
+
|
| 65 |
+
This is a quadratic in terms of \(\cos y\), so we might be able to find its minimum value.
|
| 66 |
+
|
| 67 |
+
Wait, perhaps it's better to think about minimizing each factor separately and then multiply the minima together. Let's try that.
|
| 68 |
+
|
| 69 |
+
First, let's find the minimum of the first factor:
|
| 70 |
+
|
| 71 |
+
\[
|
| 72 |
+
F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2
|
| 73 |
+
\]
|
| 74 |
+
|
| 75 |
+
This seems complicated due to the absolute value and the trigonometric functions. Maybe we can express it in terms of a single trigonometric function.
|
| 76 |
+
|
| 77 |
+
Alternatively, perhaps we can use calculus to find the minimum of \(F_1(x)\). Let's try that.
|
| 78 |
+
|
| 79 |
+
Let's consider \(F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2\). To find the minimum, we can take the derivative and set it to zero.
|
| 80 |
+
|
| 81 |
+
However, the absolute value makes this tricky. Perhaps we can consider the cases where \(\cos x\) is positive and negative separately.
|
| 82 |
+
|
| 83 |
+
Case 1: \(\cos x \geq 0\)
|
| 84 |
+
|
| 85 |
+
Then \(F_1(x) = 2\cos x - \sqrt{36-4\sqrt{5}} \sin x + 2\). Taking the derivative with respect to \(x\):
|
| 86 |
+
|
| 87 |
+
\[
|
| 88 |
+
F_1'(x) = -2\sin x - \sqrt{36-4\sqrt{5}} \cos x
|
| 89 |
+
\]
|
| 90 |
+
|
| 91 |
+
Setting \(F_1'(x) = 0\):
|
| 92 |
+
|
| 93 |
+
\[
|
| 94 |
+
-2\sin x - \sqrt{36-4\sqrt{5}} \cos x = 0 \implies -2\sin x = \sqrt{36-4\sqrt{5}} \cos x \implies \tan x = -\frac{\sqrt{36-4\sqrt{5}}}{2}
|
| 95 |
+
\]
|
| 96 |
+
|
| 97 |
+
This gives us a critical point, but we need to check if it's a minimum.
|
| 98 |
+
|
| 99 |
+
Alternatively, perhaps we can use trigonometric identities to express \(F_1(x)\) as a single trigonometric function.
|
| 100 |
+
|
| 101 |
+
Recall that \(A\sin x + B\cos x = R\sin(x + \alpha)\), where \(R = \sqrt{A^2 + B^2}\) and \(\tan \alpha = \frac{B}{A}\).
|
| 102 |
+
|
| 103 |
+
In our case, \(A = -\sqrt{36-4\sqrt{5}}\) and \(B = 2\), so:
|
| 104 |
+
|
| 105 |
+
\[
|
| 106 |
+
R = \sqrt{(-\sqrt{36-4\sqrt{5}})^2 + 2^2} = \sqrt{36-4\sqrt{5} + 4} = \sqrt{40-4\sqrt{5}} = 2\sqrt{10-\sqrt{5}}
|
| 107 |
+
\]
|
| 108 |
+
|
| 109 |
+
So, \(F_1(x) = 2\sqrt{10-\sqrt{5}} \sin(x + \alpha) + 2\).
|
| 110 |
+
|
| 111 |
+
The minimum value of \(\sin(x + \alpha)\) is \(-1\), so the minimum of \(F_1(x)\) is:
|
| 112 |
+
|
| 113 |
+
\[
|
| 114 |
+
2\sqrt{10-\sqrt{5}} \cdot (-1) + 2 = -2\sqrt{10-\sqrt{5}} + 2
|
| 115 |
+
\]
|
| 116 |
+
|
| 117 |
+
Now, let's find the minimum of the second factor:
|
| 118 |
+
|
| 119 |
+
\[
|
| 120 |
+
F_2(y) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
|
| 121 |
+
\]
|
| 122 |
+
|
| 123 |
+
This is a quadratic in \(\cos y\). Let \(z = \cos y\), then:
|
| 124 |
+
|
| 125 |
+
\[
|
| 126 |
+
F_2(y) = -2z^2 + 2\sqrt{10-\sqrt{5}} z + 4
|
| 127 |
+
\]
|
| 128 |
+
|
| 129 |
+
This is a quadratic equation in \(z\), and since the coefficient of \(z^2\) is negative, it has a maximum value. However, we need the minimum value of \(F_2(y)\). The minimum will occur at the boundaries of \(z\), i.e., when \(z = 1\) or \(z = -1\).
|
| 130 |
+
|
| 131 |
+
Let's evaluate \(F_2(y)\) at \(z = 1\) and \(z = -1\).
|
| 132 |
+
|
| 133 |
+
At \(z = 1\):
|
| 134 |
+
|
| 135 |
+
\[
|
| 136 |
+
F_2(y) = -2(1)^2 + 2\sqrt{10-\sqrt{5}} (1) + 4 = -2 + 2\sqrt{10-\sqrt{5}} + 4 = 2 + 2\sqrt{10-\sqrt{5}}
|
| 137 |
+
\]
|
| 138 |
+
|
| 139 |
+
At \(z = -1\):
|
| 140 |
+
|
| 141 |
+
\[
|
| 142 |
+
F_2(y) = -2(-1)^2 + 2\sqrt{10-\sqrt{5}} (-1) + 4 = -2 - 2\sqrt{10-\sqrt{5}} + 4 = 2 - 2\sqrt{10-\sqrt{5}}
|
| 143 |
+
\]
|
| 144 |
+
|
| 145 |
+
Since \(\sqrt{10-\sqrt{5}} > 0\), the minimum value of \(F_2(y)\) is \(2 - 2\sqrt{10-\sqrt{5}}\).
|
| 146 |
+
|
| 147 |
+
Now, the minimum value of the entire expression is the product of the minima of \(F_1(x)\) and \(F_2(y)\):
|
| 148 |
+
|
| 149 |
+
\[
|
| 150 |
+
(-2\sqrt{10-\sqrt{5}} + 2) \cdot (2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}})
|
| 151 |
+
\]
|
| 152 |
+
|
| 153 |
+
Let's compute this product:
|
| 154 |
+
|
| 155 |
+
\[
|
| 156 |
+
(-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} \cdot 2) + (-2\sqrt{10-\sqrt{5}} \cdot -2\sqrt{10-\sqrt{5}}) + (2 \cdot 2) + (2 \cdot -2\sqrt{10-\sqrt{5}})
|
| 157 |
+
\]
|
| 158 |
+
|
| 159 |
+
Simplifying each term:
|
| 160 |
+
|
| 161 |
+
\[
|
| 162 |
+
= -4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 - 4\sqrt{10-\sqrt{5}}
|
| 163 |
+
\]
|
| 164 |
+
|
| 165 |
+
Combine like terms:
|
| 166 |
+
|
| 167 |
+
\[
|
| 168 |
+
= -4\sqrt{10-\sqrt{5}} - 4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 = -8\sqrt{10-\sqrt{5}} + 40 - 4\sqrt{5} + 4 = -8\sqrt{10-\sqrt{5}} + 44 - 4\sqrt{5}
|
| 169 |
+
\]
|
| 170 |
+
|
| 171 |
+
This expression is quite complicated, and calculating its exact value might not be straightforward. However, we can approximate the value.
|
| 172 |
+
|
| 173 |
+
First, let's approximate \(\sqrt{10 - \sqrt{5}}\). Since \(\sqrt{5} \approx 2.236\), we have:
|
| 174 |
+
|
| 175 |
+
\[
|
| 176 |
+
\sqrt{10 - 2.236} = \sqrt{7.764} \approx 2.786
|
| 177 |
+
\]
|
| 178 |
+
|
| 179 |
+
Similarly, \(\sqrt{5} \approx 2.236\).
|
| 180 |
+
|
| 181 |
+
Now, let's approximate the expression:
|
| 182 |
+
|
| 183 |
+
\[
|
| 184 |
+
-8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
|
| 185 |
+
\]
|
| 186 |
+
|
| 187 |
+
Rounding this to the nearest integer gives us 13.
|
| 188 |
+
|
| 189 |
+
Wait, let's double-check the calculations to ensure accuracy.
|
| 190 |
+
|
| 191 |
+
First, let's compute \(\sqrt{10 - \sqrt{5}}\) more precisely.
|
| 192 |
+
|
| 193 |
+
\(\sqrt{5} \approx 2.2360679775\), so:
|
| 194 |
+
|
| 195 |
+
\[
|
| 196 |
+
\sqrt{10 - 2.2360679775} = \sqrt{7.7639320225} \approx 2.786
|
| 197 |
+
\]
|
| 198 |
+
|
| 199 |
+
Now, compute the expression:
|
| 200 |
+
|
| 201 |
+
\[
|
| 202 |
+
-8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
|
| 203 |
+
\]
|
| 204 |
+
|
| 205 |
+
Rounding 12.768 to the nearest integer gives us 13.
|
| 206 |
+
|
| 207 |
+
Thus, the minimum value of the expression is approximately 13.
|
| 208 |
+
</think>
|
| 209 |
+
|
| 210 |
+
<answer>
|
| 211 |
+
\boxed{13}
|
| 212 |
+
</answer>
|
| 213 |
```
|