qingy2024 lbourdois commited on
Commit
c3da4eb
·
verified ·
1 Parent(s): 62ffc7b

Improve language tag (#1)

Browse files

- Improve language tag (a72cd768163fddbb75275ed463c778195a283c39)


Co-authored-by: Loïck BOURDOIS <lbourdois@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +212 -200
README.md CHANGED
@@ -1,201 +1,213 @@
1
- ---
2
- license: apache-2.0
3
- datasets:
4
- - qingy2024/PR2-SFT
5
- language:
6
- - en
7
- base_model:
8
- - Qwen/Qwen2.5-14B-Instruct
9
- ---
10
-
11
- ## PR2 14B Instruct (LoRA adapters)
12
-
13
- PR2 is an experimental fine tune of Qwen2.5 14B Instruct, incorporating planning and reasoning before outputting a final answer. It is trained for 2 epochs on the verified subset of qingy2024/PR2-SFT.
14
-
15
- **Example:**
16
-
17
- Input: Find the minimum value of the expression \\(\left(\sqrt{2(1+\cos 2 x)}-\sqrt{36-4 \sqrt{5}} \sin x+2\right) \cdot \left(3+2 \sqrt{10-\sqrt{5}} \cos y-\cos 2 y\right)\\). If the answer is not an integer, round it to the nearest integer.
18
-
19
- Output:
20
-
21
- ```
22
- <plan>
23
- 1. Simplify the expression by breaking it down into manageable parts.
24
- 2. Use trigonometric identities to simplify terms involving trigonometric functions.
25
- 3. Analyze the structure of the expression to identify potential optimization strategies.
26
- 4. Consider the possibility of minimizing each part of the expression separately.
27
- 5. Calculate the minimum value of the entire expression and round it to the nearest integer if necessary.
28
- </plan>
29
-
30
- <think>
31
- Hmm... let me start by simplifying the expression. The expression is:
32
-
33
- \[
34
- \left(\sqrt{2(1+\cos 2x)} - \sqrt{36-4\sqrt{5}} \sin x + 2\right) \cdot \left(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\right)
35
- \]
36
-
37
- First, I notice that \(\sqrt{2(1+\cos 2x)}\) can be simplified using a trigonometric identity. Recall that \(1 + \cos 2x = 2\cos^2 x\), so:
38
-
39
- \[
40
- \sqrt{2(1+\cos 2x)} = \sqrt{2 \cdot 2\cos^2 x} = \sqrt{4\cos^2 x} = 2|\cos x|
41
- \]
42
-
43
- Since \(\cos x\) can be positive or negative, we'll keep it as \(2|\cos x|\) for now.
44
-
45
- Next, let's look at the second part of the first factor: \(-\sqrt{36-4\sqrt{5}} \sin x + 2\). This seems a bit complicated, but perhaps we can find a way to simplify or bound it.
46
-
47
- Now, let's consider the second factor: \(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\). Again, we can use trigonometric identities to simplify \(\cos 2y\). Recall that \(\cos 2y = 2\cos^2 y - 1\), so:
48
-
49
- \[
50
- 3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y = 3 + 2\sqrt{10-\sqrt{5}} \cos y - (2\cos^2 y - 1) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
51
- \]
52
-
53
- This is a quadratic in terms of \(\cos y\), so we might be able to find its minimum value.
54
-
55
- Wait, perhaps it's better to think about minimizing each factor separately and then multiply the minima together. Let's try that.
56
-
57
- First, let's find the minimum of the first factor:
58
-
59
- \[
60
- F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2
61
- \]
62
-
63
- This seems complicated due to the absolute value and the trigonometric functions. Maybe we can express it in terms of a single trigonometric function.
64
-
65
- Alternatively, perhaps we can use calculus to find the minimum of \(F_1(x)\). Let's try that.
66
-
67
- Let's consider \(F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2\). To find the minimum, we can take the derivative and set it to zero.
68
-
69
- However, the absolute value makes this tricky. Perhaps we can consider the cases where \(\cos x\) is positive and negative separately.
70
-
71
- Case 1: \(\cos x \geq 0\)
72
-
73
- Then \(F_1(x) = 2\cos x - \sqrt{36-4\sqrt{5}} \sin x + 2\). Taking the derivative with respect to \(x\):
74
-
75
- \[
76
- F_1'(x) = -2\sin x - \sqrt{36-4\sqrt{5}} \cos x
77
- \]
78
-
79
- Setting \(F_1'(x) = 0\):
80
-
81
- \[
82
- -2\sin x - \sqrt{36-4\sqrt{5}} \cos x = 0 \implies -2\sin x = \sqrt{36-4\sqrt{5}} \cos x \implies \tan x = -\frac{\sqrt{36-4\sqrt{5}}}{2}
83
- \]
84
-
85
- This gives us a critical point, but we need to check if it's a minimum.
86
-
87
- Alternatively, perhaps we can use trigonometric identities to express \(F_1(x)\) as a single trigonometric function.
88
-
89
- Recall that \(A\sin x + B\cos x = R\sin(x + \alpha)\), where \(R = \sqrt{A^2 + B^2}\) and \(\tan \alpha = \frac{B}{A}\).
90
-
91
- In our case, \(A = -\sqrt{36-4\sqrt{5}}\) and \(B = 2\), so:
92
-
93
- \[
94
- R = \sqrt{(-\sqrt{36-4\sqrt{5}})^2 + 2^2} = \sqrt{36-4\sqrt{5} + 4} = \sqrt{40-4\sqrt{5}} = 2\sqrt{10-\sqrt{5}}
95
- \]
96
-
97
- So, \(F_1(x) = 2\sqrt{10-\sqrt{5}} \sin(x + \alpha) + 2\).
98
-
99
- The minimum value of \(\sin(x + \alpha)\) is \(-1\), so the minimum of \(F_1(x)\) is:
100
-
101
- \[
102
- 2\sqrt{10-\sqrt{5}} \cdot (-1) + 2 = -2\sqrt{10-\sqrt{5}} + 2
103
- \]
104
-
105
- Now, let's find the minimum of the second factor:
106
-
107
- \[
108
- F_2(y) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
109
- \]
110
-
111
- This is a quadratic in \(\cos y\). Let \(z = \cos y\), then:
112
-
113
- \[
114
- F_2(y) = -2z^2 + 2\sqrt{10-\sqrt{5}} z + 4
115
- \]
116
-
117
- This is a quadratic equation in \(z\), and since the coefficient of \(z^2\) is negative, it has a maximum value. However, we need the minimum value of \(F_2(y)\). The minimum will occur at the boundaries of \(z\), i.e., when \(z = 1\) or \(z = -1\).
118
-
119
- Let's evaluate \(F_2(y)\) at \(z = 1\) and \(z = -1\).
120
-
121
- At \(z = 1\):
122
-
123
- \[
124
- F_2(y) = -2(1)^2 + 2\sqrt{10-\sqrt{5}} (1) + 4 = -2 + 2\sqrt{10-\sqrt{5}} + 4 = 2 + 2\sqrt{10-\sqrt{5}}
125
- \]
126
-
127
- At \(z = -1\):
128
-
129
- \[
130
- F_2(y) = -2(-1)^2 + 2\sqrt{10-\sqrt{5}} (-1) + 4 = -2 - 2\sqrt{10-\sqrt{5}} + 4 = 2 - 2\sqrt{10-\sqrt{5}}
131
- \]
132
-
133
- Since \(\sqrt{10-\sqrt{5}} > 0\), the minimum value of \(F_2(y)\) is \(2 - 2\sqrt{10-\sqrt{5}}\).
134
-
135
- Now, the minimum value of the entire expression is the product of the minima of \(F_1(x)\) and \(F_2(y)\):
136
-
137
- \[
138
- (-2\sqrt{10-\sqrt{5}} + 2) \cdot (2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}})
139
- \]
140
-
141
- Let's compute this product:
142
-
143
- \[
144
- (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} \cdot 2) + (-2\sqrt{10-\sqrt{5}} \cdot -2\sqrt{10-\sqrt{5}}) + (2 \cdot 2) + (2 \cdot -2\sqrt{10-\sqrt{5}})
145
- \]
146
-
147
- Simplifying each term:
148
-
149
- \[
150
- = -4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 - 4\sqrt{10-\sqrt{5}}
151
- \]
152
-
153
- Combine like terms:
154
-
155
- \[
156
- = -4\sqrt{10-\sqrt{5}} - 4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 = -8\sqrt{10-\sqrt{5}} + 40 - 4\sqrt{5} + 4 = -8\sqrt{10-\sqrt{5}} + 44 - 4\sqrt{5}
157
- \]
158
-
159
- This expression is quite complicated, and calculating its exact value might not be straightforward. However, we can approximate the value.
160
-
161
- First, let's approximate \(\sqrt{10 - \sqrt{5}}\). Since \(\sqrt{5} \approx 2.236\), we have:
162
-
163
- \[
164
- \sqrt{10 - 2.236} = \sqrt{7.764} \approx 2.786
165
- \]
166
-
167
- Similarly, \(\sqrt{5} \approx 2.236\).
168
-
169
- Now, let's approximate the expression:
170
-
171
- \[
172
- -8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
173
- \]
174
-
175
- Rounding this to the nearest integer gives us 13.
176
-
177
- Wait, let's double-check the calculations to ensure accuracy.
178
-
179
- First, let's compute \(\sqrt{10 - \sqrt{5}}\) more precisely.
180
-
181
- \(\sqrt{5} \approx 2.2360679775\), so:
182
-
183
- \[
184
- \sqrt{10 - 2.2360679775} = \sqrt{7.7639320225} \approx 2.786
185
- \]
186
-
187
- Now, compute the expression:
188
-
189
- \[
190
- -8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
191
- \]
192
-
193
- Rounding 12.768 to the nearest integer gives us 13.
194
-
195
- Thus, the minimum value of the expression is approximately 13.
196
- </think>
197
-
198
- <answer>
199
- \boxed{13}
200
- </answer>
 
 
 
 
 
 
 
 
 
 
 
 
201
  ```
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - qingy2024/PR2-SFT
5
+ language:
6
+ - zho
7
+ - eng
8
+ - fra
9
+ - spa
10
+ - por
11
+ - deu
12
+ - ita
13
+ - rus
14
+ - jpn
15
+ - kor
16
+ - vie
17
+ - tha
18
+ - ara
19
+ base_model:
20
+ - Qwen/Qwen2.5-14B-Instruct
21
+ ---
22
+
23
+ ## PR2 14B Instruct (LoRA adapters)
24
+
25
+ PR2 is an experimental fine tune of Qwen2.5 14B Instruct, incorporating planning and reasoning before outputting a final answer. It is trained for 2 epochs on the verified subset of qingy2024/PR2-SFT.
26
+
27
+ **Example:**
28
+
29
+ Input: Find the minimum value of the expression \\(\left(\sqrt{2(1+\cos 2 x)}-\sqrt{36-4 \sqrt{5}} \sin x+2\right) \cdot \left(3+2 \sqrt{10-\sqrt{5}} \cos y-\cos 2 y\right)\\). If the answer is not an integer, round it to the nearest integer.
30
+
31
+ Output:
32
+
33
+ ```
34
+ <plan>
35
+ 1. Simplify the expression by breaking it down into manageable parts.
36
+ 2. Use trigonometric identities to simplify terms involving trigonometric functions.
37
+ 3. Analyze the structure of the expression to identify potential optimization strategies.
38
+ 4. Consider the possibility of minimizing each part of the expression separately.
39
+ 5. Calculate the minimum value of the entire expression and round it to the nearest integer if necessary.
40
+ </plan>
41
+
42
+ <think>
43
+ Hmm... let me start by simplifying the expression. The expression is:
44
+
45
+ \[
46
+ \left(\sqrt{2(1+\cos 2x)} - \sqrt{36-4\sqrt{5}} \sin x + 2\right) \cdot \left(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\right)
47
+ \]
48
+
49
+ First, I notice that \(\sqrt{2(1+\cos 2x)}\) can be simplified using a trigonometric identity. Recall that \(1 + \cos 2x = 2\cos^2 x\), so:
50
+
51
+ \[
52
+ \sqrt{2(1+\cos 2x)} = \sqrt{2 \cdot 2\cos^2 x} = \sqrt{4\cos^2 x} = 2|\cos x|
53
+ \]
54
+
55
+ Since \(\cos x\) can be positive or negative, we'll keep it as \(2|\cos x|\) for now.
56
+
57
+ Next, let's look at the second part of the first factor: \(-\sqrt{36-4\sqrt{5}} \sin x + 2\). This seems a bit complicated, but perhaps we can find a way to simplify or bound it.
58
+
59
+ Now, let's consider the second factor: \(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\). Again, we can use trigonometric identities to simplify \(\cos 2y\). Recall that \(\cos 2y = 2\cos^2 y - 1\), so:
60
+
61
+ \[
62
+ 3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y = 3 + 2\sqrt{10-\sqrt{5}} \cos y - (2\cos^2 y - 1) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
63
+ \]
64
+
65
+ This is a quadratic in terms of \(\cos y\), so we might be able to find its minimum value.
66
+
67
+ Wait, perhaps it's better to think about minimizing each factor separately and then multiply the minima together. Let's try that.
68
+
69
+ First, let's find the minimum of the first factor:
70
+
71
+ \[
72
+ F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2
73
+ \]
74
+
75
+ This seems complicated due to the absolute value and the trigonometric functions. Maybe we can express it in terms of a single trigonometric function.
76
+
77
+ Alternatively, perhaps we can use calculus to find the minimum of \(F_1(x)\). Let's try that.
78
+
79
+ Let's consider \(F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2\). To find the minimum, we can take the derivative and set it to zero.
80
+
81
+ However, the absolute value makes this tricky. Perhaps we can consider the cases where \(\cos x\) is positive and negative separately.
82
+
83
+ Case 1: \(\cos x \geq 0\)
84
+
85
+ Then \(F_1(x) = 2\cos x - \sqrt{36-4\sqrt{5}} \sin x + 2\). Taking the derivative with respect to \(x\):
86
+
87
+ \[
88
+ F_1'(x) = -2\sin x - \sqrt{36-4\sqrt{5}} \cos x
89
+ \]
90
+
91
+ Setting \(F_1'(x) = 0\):
92
+
93
+ \[
94
+ -2\sin x - \sqrt{36-4\sqrt{5}} \cos x = 0 \implies -2\sin x = \sqrt{36-4\sqrt{5}} \cos x \implies \tan x = -\frac{\sqrt{36-4\sqrt{5}}}{2}
95
+ \]
96
+
97
+ This gives us a critical point, but we need to check if it's a minimum.
98
+
99
+ Alternatively, perhaps we can use trigonometric identities to express \(F_1(x)\) as a single trigonometric function.
100
+
101
+ Recall that \(A\sin x + B\cos x = R\sin(x + \alpha)\), where \(R = \sqrt{A^2 + B^2}\) and \(\tan \alpha = \frac{B}{A}\).
102
+
103
+ In our case, \(A = -\sqrt{36-4\sqrt{5}}\) and \(B = 2\), so:
104
+
105
+ \[
106
+ R = \sqrt{(-\sqrt{36-4\sqrt{5}})^2 + 2^2} = \sqrt{36-4\sqrt{5} + 4} = \sqrt{40-4\sqrt{5}} = 2\sqrt{10-\sqrt{5}}
107
+ \]
108
+
109
+ So, \(F_1(x) = 2\sqrt{10-\sqrt{5}} \sin(x + \alpha) + 2\).
110
+
111
+ The minimum value of \(\sin(x + \alpha)\) is \(-1\), so the minimum of \(F_1(x)\) is:
112
+
113
+ \[
114
+ 2\sqrt{10-\sqrt{5}} \cdot (-1) + 2 = -2\sqrt{10-\sqrt{5}} + 2
115
+ \]
116
+
117
+ Now, let's find the minimum of the second factor:
118
+
119
+ \[
120
+ F_2(y) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
121
+ \]
122
+
123
+ This is a quadratic in \(\cos y\). Let \(z = \cos y\), then:
124
+
125
+ \[
126
+ F_2(y) = -2z^2 + 2\sqrt{10-\sqrt{5}} z + 4
127
+ \]
128
+
129
+ This is a quadratic equation in \(z\), and since the coefficient of \(z^2\) is negative, it has a maximum value. However, we need the minimum value of \(F_2(y)\). The minimum will occur at the boundaries of \(z\), i.e., when \(z = 1\) or \(z = -1\).
130
+
131
+ Let's evaluate \(F_2(y)\) at \(z = 1\) and \(z = -1\).
132
+
133
+ At \(z = 1\):
134
+
135
+ \[
136
+ F_2(y) = -2(1)^2 + 2\sqrt{10-\sqrt{5}} (1) + 4 = -2 + 2\sqrt{10-\sqrt{5}} + 4 = 2 + 2\sqrt{10-\sqrt{5}}
137
+ \]
138
+
139
+ At \(z = -1\):
140
+
141
+ \[
142
+ F_2(y) = -2(-1)^2 + 2\sqrt{10-\sqrt{5}} (-1) + 4 = -2 - 2\sqrt{10-\sqrt{5}} + 4 = 2 - 2\sqrt{10-\sqrt{5}}
143
+ \]
144
+
145
+ Since \(\sqrt{10-\sqrt{5}} > 0\), the minimum value of \(F_2(y)\) is \(2 - 2\sqrt{10-\sqrt{5}}\).
146
+
147
+ Now, the minimum value of the entire expression is the product of the minima of \(F_1(x)\) and \(F_2(y)\):
148
+
149
+ \[
150
+ (-2\sqrt{10-\sqrt{5}} + 2) \cdot (2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}})
151
+ \]
152
+
153
+ Let's compute this product:
154
+
155
+ \[
156
+ (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} \cdot 2) + (-2\sqrt{10-\sqrt{5}} \cdot -2\sqrt{10-\sqrt{5}}) + (2 \cdot 2) + (2 \cdot -2\sqrt{10-\sqrt{5}})
157
+ \]
158
+
159
+ Simplifying each term:
160
+
161
+ \[
162
+ = -4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 - 4\sqrt{10-\sqrt{5}}
163
+ \]
164
+
165
+ Combine like terms:
166
+
167
+ \[
168
+ = -4\sqrt{10-\sqrt{5}} - 4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 = -8\sqrt{10-\sqrt{5}} + 40 - 4\sqrt{5} + 4 = -8\sqrt{10-\sqrt{5}} + 44 - 4\sqrt{5}
169
+ \]
170
+
171
+ This expression is quite complicated, and calculating its exact value might not be straightforward. However, we can approximate the value.
172
+
173
+ First, let's approximate \(\sqrt{10 - \sqrt{5}}\). Since \(\sqrt{5} \approx 2.236\), we have:
174
+
175
+ \[
176
+ \sqrt{10 - 2.236} = \sqrt{7.764} \approx 2.786
177
+ \]
178
+
179
+ Similarly, \(\sqrt{5} \approx 2.236\).
180
+
181
+ Now, let's approximate the expression:
182
+
183
+ \[
184
+ -8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
185
+ \]
186
+
187
+ Rounding this to the nearest integer gives us 13.
188
+
189
+ Wait, let's double-check the calculations to ensure accuracy.
190
+
191
+ First, let's compute \(\sqrt{10 - \sqrt{5}}\) more precisely.
192
+
193
+ \(\sqrt{5} \approx 2.2360679775\), so:
194
+
195
+ \[
196
+ \sqrt{10 - 2.2360679775} = \sqrt{7.7639320225} \approx 2.786
197
+ \]
198
+
199
+ Now, compute the expression:
200
+
201
+ \[
202
+ -8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
203
+ \]
204
+
205
+ Rounding 12.768 to the nearest integer gives us 13.
206
+
207
+ Thus, the minimum value of the expression is approximately 13.
208
+ </think>
209
+
210
+ <answer>
211
+ \boxed{13}
212
+ </answer>
213
  ```