Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- racineai/OGC_2_vdr-visRAG-colpali
|
| 5 |
+
language:
|
| 6 |
+
- fr
|
| 7 |
+
- en
|
| 8 |
+
- de
|
| 9 |
+
- es
|
| 10 |
+
- it
|
| 11 |
+
base_model:
|
| 12 |
+
- HuggingFaceTB/SmolVLM-500M-Instruct
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# Flantier-SmolVLM-500M-dse
|
| 16 |
+
|
| 17 |
+
A lightweight multimodal vision-language model specialized for technical document retrieval.
|
| 18 |
+
|
| 19 |
+
## Overview
|
| 20 |
+
|
| 21 |
+
Flantier-SmolVLM-500M-dse (Document Screenshot Embedding) is a 500M parameter vision-language model designed for efficient retrieval of technical documentation. It directly encodes document screenshots into embeddings, preserving all information including text, images, and layout without requiring separate content extraction.
|
| 22 |
+
|
| 23 |
+
## Key Features
|
| 24 |
+
|
| 25 |
+
- **Efficient Retrieval**: Generates document and query embeddings for semantic similarity search
|
| 26 |
+
- **Multimodal Understanding**: Processes text, diagrams, charts, and tables in their original layout
|
| 27 |
+
- **Lightweight Architecture**: Only 500M parameters, runs on consumer GPUs
|
| 28 |
+
- **No Preprocessing Required**: Directly works with document screenshots
|
| 29 |
+
|
| 30 |
+
## Installation
|
| 31 |
+
|
| 32 |
+
```bash
|
| 33 |
+
pip install transformers accelerate pillow
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
## Usage Example
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
from PIL import Image
|
| 40 |
+
import torch
|
| 41 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 42 |
+
|
| 43 |
+
# Load model and processor
|
| 44 |
+
processor = AutoProcessor.from_pretrained("racineai/Flantier-SmolVLM-500M-dse")
|
| 45 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 46 |
+
"racineai/Flantier-SmolVLM-500M-dse",
|
| 47 |
+
torch_dtype=torch.bfloat16,
|
| 48 |
+
device_map="auto"
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# Load document image
|
| 52 |
+
document_image = Image.open("technical_document.jpg")
|
| 53 |
+
|
| 54 |
+
# Process for document embedding
|
| 55 |
+
doc_messages = [
|
| 56 |
+
{
|
| 57 |
+
"role": "user",
|
| 58 |
+
"content": [
|
| 59 |
+
{"type": "image"},
|
| 60 |
+
{"type": "text", "text": "What is shown in this image?"}
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
]
|
| 64 |
+
doc_prompt = processor.apply_chat_template(doc_messages, add_generation_prompt=True)
|
| 65 |
+
doc_inputs = processor(text=doc_prompt, images=[document_image], return_tensors="pt").to(model.device)
|
| 66 |
+
|
| 67 |
+
# Generate document embedding
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
doc_outputs = model(**doc_inputs, output_hidden_states=True, return_dict=True)
|
| 70 |
+
doc_embedding = doc_outputs.hidden_states[-1][:, -1] # Last token embedding
|
| 71 |
+
doc_embedding = torch.nn.functional.normalize(doc_embedding, p=2, dim=-1)
|
| 72 |
+
|
| 73 |
+
# Process query embedding
|
| 74 |
+
query = "What are the specifications of this component?"
|
| 75 |
+
query_messages = [
|
| 76 |
+
{
|
| 77 |
+
"role": "user",
|
| 78 |
+
"content": [
|
| 79 |
+
{"type": "text", "text": query}
|
| 80 |
+
]
|
| 81 |
+
},
|
| 82 |
+
]
|
| 83 |
+
query_prompt = processor.apply_chat_template(query_messages, add_generation_prompt=True)
|
| 84 |
+
query_inputs = processor(text=query_prompt, return_tensors="pt").to(model.device)
|
| 85 |
+
|
| 86 |
+
# Generate query embedding
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
query_outputs = model(**query_inputs, output_hidden_states=True, return_dict=True)
|
| 89 |
+
query_embedding = query_outputs.hidden_states[-1][:, -1] # Last token embedding
|
| 90 |
+
query_embedding = torch.nn.functional.normalize(query_embedding, p=2, dim=-1)
|
| 91 |
+
|
| 92 |
+
# Calculate similarity
|
| 93 |
+
similarity = torch.nn.functional.cosine_similarity(query_embedding, doc_embedding)
|
| 94 |
+
print(f"Similarity score: {similarity.item():.4f}")
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
## Applications
|
| 98 |
+
|
| 99 |
+
- **Technical Document Retrieval**: Find relevant documents based on technical queries
|
| 100 |
+
- **Technical Support Systems**: Match user questions to relevant documentation
|
| 101 |
+
- **Engineering Knowledge Management**: Index and search technical specifications, diagrams, and reports
|
| 102 |
+
|
| 103 |
+
## Training Methodology
|
| 104 |
+
|
| 105 |
+
This model was trained using the Document Screenshot Embedding (DSE) approach, which treats document screenshots as a unified input format. This eliminates the need for content extraction preprocessing while preserving all visual and textual information in documents.
|
| 106 |
+
|
| 107 |
+
## Citation
|
| 108 |
+
|
| 109 |
+
```
|
| 110 |
+
@misc{flantier-smolvlm-dse,
|
| 111 |
+
author = {racine.ai},
|
| 112 |
+
title = {Flantier-SmolVLM-500M-dse: A Lightweight Document Screenshot Embedding Model},
|
| 113 |
+
year = {2025},
|
| 114 |
+
publisher = {Hugging Face},
|
| 115 |
+
url = {https://huggingface.co/racineai/Flantier-SmolVLM-500M-dse}
|
| 116 |
+
}
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
## License
|
| 120 |
+
|
| 121 |
+
This model is released under the Apache 2.0 license.
|