train_rte_1744902659

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the rte dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1560
  • Num Input Tokens Seen: 98761256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.3
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • training_steps: 40000

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.1763 1.4207 200 0.1636 496688
0.1578 2.8414 400 0.1577 991488
0.1612 4.2567 600 0.1604 1481464
0.155 5.6774 800 0.1737 1979088
0.1511 7.0927 1000 0.1661 2468504
0.1637 8.5134 1200 0.1808 2963120
0.1604 9.9340 1400 0.1603 3459048
0.1702 11.3494 1600 0.1652 3951104
0.149 12.7701 1800 0.1587 4445432
0.1563 14.1854 2000 0.1727 4938824
0.152 15.6061 2200 0.1624 5433720
0.1747 17.0214 2400 0.2194 5925896
0.1508 18.4421 2600 0.1591 6422360
0.1544 19.8627 2800 0.1613 6914152
0.1563 21.2781 3000 0.1628 7403976
0.1528 22.6988 3200 0.1650 7902520
0.1546 24.1141 3400 0.1616 8394080
0.1574 25.5348 3600 0.1560 8884224
0.156 26.9554 3800 0.1587 9382368
0.1586 28.3708 4000 0.1588 9872768
0.1482 29.7914 4200 0.1590 10366000
0.1513 31.2068 4400 0.1579 10867488
0.1604 32.6275 4600 0.1601 11358568
0.1562 34.0428 4800 0.1665 11852320
0.1522 35.4635 5000 0.1580 12343880
0.1504 36.8841 5200 0.1618 12837040
0.175 38.2995 5400 0.1635 13329368
0.148 39.7201 5600 0.1629 13828784
0.1459 41.1355 5800 0.1620 14315304
0.1527 42.5561 6000 0.1631 14806592
0.1525 43.9768 6200 0.1638 15305208
0.2929 45.3922 6400 0.2869 15791608
0.1587 46.8128 6600 0.1586 16292464
0.1579 48.2282 6800 0.1613 16781768
0.1482 49.6488 7000 0.1601 17278560
0.1495 51.0642 7200 0.1656 17769384
0.1584 52.4848 7400 0.1605 18262680
0.1537 53.9055 7600 0.1625 18763936
0.1521 55.3209 7800 0.1682 19258096
0.1542 56.7415 8000 0.1639 19753648
0.1431 58.1569 8200 0.1703 20244128
0.1517 59.5775 8400 0.1667 20739208
0.149 60.9982 8600 0.1700 21236872
0.1474 62.4135 8800 0.1610 21726944
0.1569 63.8342 9000 0.1627 22223288
0.1426 65.2496 9200 0.1676 22716672
0.1567 66.6702 9400 0.1668 23209088
0.1492 68.0856 9600 0.1652 23701520
0.1508 69.5062 9800 0.1692 24197944
0.1517 70.9269 10000 0.1674 24694272
0.1419 72.3422 10200 0.1700 25191256
0.1348 73.7629 10400 0.1719 25688288
0.143 75.1783 10600 0.1670 26177720
0.1419 76.5989 10800 0.1713 26675248
0.1403 78.0143 11000 0.1696 27168496
0.134 79.4349 11200 0.1882 27664360
0.1344 80.8556 11400 0.1876 28161984
0.1194 82.2709 11600 0.1797 28655448
0.1134 83.6916 11800 0.2085 29151808
0.1113 85.1070 12000 0.2133 29642952
0.0911 86.5276 12200 0.2172 30140536
0.1133 87.9483 12400 0.2262 30639808
0.0792 89.3636 12600 0.2621 31135048
0.0868 90.7843 12800 0.2296 31630256
0.0485 92.1996 13000 0.2493 32121256
0.0232 93.6203 13200 0.3262 32618184
0.027 95.0357 13400 0.3350 33115432
0.0219 96.4563 13600 0.3802 33609472
0.0144 97.8770 13800 0.3693 34098712
0.004 99.2923 14000 0.4255 34590368
0.0176 100.7130 14200 0.3845 35081248
0.0032 102.1283 14400 0.4501 35571464
0.0049 103.5490 14600 0.4454 36063824
0.0046 104.9697 14800 0.4598 36557944
0.0024 106.3850 15000 0.4496 37048560
0.0202 107.8057 15200 0.4188 37543928
0.0053 109.2210 15400 0.3996 38035968
0.0035 110.6417 15600 0.4336 38526000
0.0005 112.0570 15800 0.5136 39021440
0.0004 113.4777 16000 0.4994 39519712
0.0002 114.8984 16200 0.5459 40014440
0.0001 116.3137 16400 0.5487 40509368
0.0001 117.7344 16600 0.5664 41001000
0.0001 119.1497 16800 0.5936 41492672
0.0001 120.5704 17000 0.5985 41991984
0.0001 121.9911 17200 0.6173 42486736
0.0 123.4064 17400 0.6299 42979888
0.0001 124.8271 17600 0.6455 43473920
0.0 126.2424 17800 0.6472 43963728
0.0 127.6631 18000 0.6632 44457208
0.0 129.0784 18200 0.6749 44952664
0.0 130.4991 18400 0.6809 45446704
0.0 131.9198 18600 0.6892 45936552
0.0 133.3351 18800 0.6927 46426240
0.0 134.7558 19000 0.6884 46921256
0.0 136.1711 19200 0.7196 47412080
0.0 137.5918 19400 0.7175 47911024
0.0 139.0071 19600 0.7461 48404752
0.0 140.4278 19800 0.7344 48901416
0.0 141.8485 20000 0.7354 49400736
0.0 143.2638 20200 0.7601 49895752
0.0 144.6845 20400 0.7383 50380736
0.0045 146.0998 20600 0.7421 50871288
0.0 147.5205 20800 0.7749 51360328
0.0819 148.9412 21000 0.2368 51853696
0.0102 150.3565 21200 0.4455 52348712
0.0017 151.7772 21400 0.4607 52842992
0.0001 153.1925 21600 0.5198 53335368
0.0002 154.6132 21800 0.4956 53831240
0.0002 156.0285 22000 0.5451 54320840
0.0001 157.4492 22200 0.5620 54818304
0.0 158.8699 22400 0.5781 55310560
0.0001 160.2852 22600 0.5959 55805192
0.0001 161.7059 22800 0.6064 56294240
0.0 163.1212 23000 0.6171 56785216
0.0001 164.5419 23200 0.6276 57277112
0.0 165.9626 23400 0.6349 57768960
0.0 167.3779 23600 0.6519 58259216
0.0001 168.7986 23800 0.6514 58754552
0.0 170.2139 24000 0.6648 59250304
0.0 171.6346 24200 0.6740 59743752
0.0 173.0499 24400 0.6879 60240920
0.0 174.4706 24600 0.6971 60738488
0.0 175.8913 24800 0.7140 61232632
0.0 177.3066 25000 0.7076 61726896
0.0 178.7273 25200 0.7095 62220440
0.0 180.1426 25400 0.7190 62713544
0.0 181.5633 25600 0.7294 63208560
0.0 182.9840 25800 0.7262 63703320
0.0 184.3993 26000 0.7486 64195280
0.0041 185.8200 26200 0.7565 64693448
0.0 187.2353 26400 0.7590 65180864
0.0 188.6560 26600 0.7419 65680024
0.0 190.0713 26800 0.7771 66173368
0.0015 191.4920 27000 0.7760 66664968
0.0 192.9127 27200 0.7663 67157528
0.0 194.3280 27400 0.7157 67657848
0.0 195.7487 27600 0.7376 68154280
0.0 197.1640 27800 0.7593 68648760
0.0 198.5847 28000 0.8076 69145424
0.0 200.0 28200 0.7934 69634592
0.0 201.4207 28400 0.7994 70126824
0.0 202.8414 28600 0.8015 70621048
0.0025 204.2567 28800 0.8037 71112744
0.0 205.6774 29000 0.8194 71609328
0.0 207.0927 29200 0.8214 72096488
0.0 208.5134 29400 0.8394 72590600
0.0 209.9340 29600 0.8556 73085400
0.0 211.3494 29800 0.8367 73578704
0.0018 212.7701 30000 0.8551 74071832
0.0 214.1854 30200 0.8317 74558088
0.0 215.6061 30400 0.8396 75054720
0.0043 217.0214 30600 0.5733 75550968
0.0001 218.4421 30800 0.6028 76052048
0.0001 219.8627 31000 0.6069 76544760
0.0017 221.2781 31200 0.6315 77039312
0.0 222.6988 31400 0.6448 77536608
0.0 224.1141 31600 0.6545 78029096
0.0 225.5348 31800 0.6657 78521640
0.0 226.9554 32000 0.6726 79014704
0.0 228.3708 32200 0.6799 79509056
0.0018 229.7914 32400 0.6913 80004760
0.0 231.2068 32600 0.6914 80498576
0.0 232.6275 32800 0.6986 80992160
0.0014 234.0428 33000 0.7049 81484216
0.0 235.4635 33200 0.7092 81981536
0.0015 236.8841 33400 0.7172 82469112
0.0 238.2995 33600 0.7233 82967264
0.0 239.7201 33800 0.7240 83460632
0.0 241.1355 34000 0.7369 83946936
0.0 242.5561 34200 0.7378 84438976
0.0 243.9768 34400 0.7432 84936992
0.0 245.3922 34600 0.7521 85424648
0.0008 246.8128 34800 0.7604 85921552
0.0 248.2282 35000 0.7649 86414392
0.0 249.6488 35200 0.7753 86904424
0.0 251.0642 35400 0.7900 87399560
0.0 252.4848 35600 0.7888 87900568
0.0001 253.9055 35800 0.7993 88391952
0.0 255.3209 36000 0.7991 88887288
0.0 256.7415 36200 0.8028 89375944
0.0 258.1569 36400 0.8089 89868176
0.0 259.5775 36600 0.8126 90365056
0.0 260.9982 36800 0.8162 90855096
0.0 262.4135 37000 0.8197 91348504
0.0 263.8342 37200 0.8228 91843280
0.0 265.2496 37400 0.8229 92339160
0.0 266.6702 37600 0.8240 92834936
0.0 268.0856 37800 0.8272 93329096
0.0 269.5062 38000 0.8250 93825960
0.0 270.9269 38200 0.8273 94316976
0.0 272.3422 38400 0.8304 94808456
0.0 273.7629 38600 0.8315 95304384
0.0 275.1783 38800 0.8326 95796256
0.0 276.5989 39000 0.8341 96293992
0.0 278.0143 39200 0.8318 96783960
0.0 279.4349 39400 0.8350 97275176
0.0 280.8556 39600 0.8345 97769584
0.0 282.2709 39800 0.8277 98266712
0.0 283.6916 40000 0.8306 98761256

Framework versions

  • PEFT 0.15.1
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
11
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_rte_1744902659

Adapter
(2056)
this model