File size: 2,193 Bytes
67688b5 ddee687 67688b5 ddee687 67688b5 ddee687 67688b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- generator
metrics:
- wer
model-index:
- name: whisper-es-multicorpus-streaming-v3
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: generator
type: generator
config: default
split: train
args: default
metrics:
- type: wer
value: 0.06276824034334764
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-es-multicorpus-streaming-v3
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0816
- Wer: 0.0628
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.1346 | 0.2 | 200 | 0.1566 | 0.2221 |
| 0.117 | 0.4 | 400 | 0.1217 | 0.0790 |
| 0.0861 | 0.6 | 600 | 0.1079 | 0.0633 |
| 0.0419 | 1.1180 | 800 | 0.1172 | 0.0899 |
| 0.0467 | 1.318 | 1000 | 0.0816 | 0.0628 |
### Framework versions
- Transformers 4.57.2
- Pytorch 2.9.0+cu126
- Datasets 4.4.1
- Tokenizers 0.22.1
|