--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - generator metrics: - wer model-index: - name: whisper-es-multicorpus-streaming-v3 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: generator type: generator config: default split: train args: default metrics: - type: wer value: 0.06276824034334764 name: Wer --- # whisper-es-multicorpus-streaming-v3 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.0816 - Wer: 0.0628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.1346 | 0.2 | 200 | 0.1566 | 0.2221 | | 0.117 | 0.4 | 400 | 0.1217 | 0.0790 | | 0.0861 | 0.6 | 600 | 0.1079 | 0.0633 | | 0.0419 | 1.1180 | 800 | 0.1172 | 0.0899 | | 0.0467 | 1.318 | 1000 | 0.0816 | 0.0628 | ### Framework versions - Transformers 4.57.2 - Pytorch 2.9.0+cu126 - Datasets 4.4.1 - Tokenizers 0.22.1