--- library_name: peft license: apache-2.0 base_model: openai/whisper-small tags: - base_model:adapter:openai/whisper-small - lora - transformers datasets: - generator metrics: - wer model-index: - name: whisper-es-pr-pe-lora-v7 results: [] --- # whisper-es-pr-pe-lora-v7 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.1256 - Wer: 0.0780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.475 | 0.3333 | 400 | 3.8148 | 2.4353 | | 0.1218 | 1.0983 | 800 | 0.1386 | 0.0817 | | 0.0974 | 1.4317 | 1200 | 0.1256 | 0.0780 | ### Framework versions - PEFT 0.18.0 - Transformers 4.57.2 - Pytorch 2.9.0+cu126 - Datasets 4.4.1 - Tokenizers 0.22.1