File size: 2,874 Bytes
10f6a17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
base_model: classla/xlm-roberta-base-multilingual-text-genre-classifier
tags:
- Italian
- legal ruling
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: ribesstefano/RuleBert-v0.1-k2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ribesstefano/RuleBert-v0.1-k2
This model is a fine-tuned version of [classla/xlm-roberta-base-multilingual-text-genre-classifier](https://huggingface.co/classla/xlm-roberta-base-multilingual-text-genre-classifier) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3049
- F1: 0.5103
- Roc Auc: 0.6747
- Accuracy: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| 0.3592 | 0.14 | 250 | 0.3131 | 0.5179 | 0.6796 | 0.0 |
| 0.3369 | 0.27 | 500 | 0.3063 | 0.5109 | 0.6758 | 0.0 |
| 0.3352 | 0.41 | 750 | 0.3087 | 0.5110 | 0.6750 | 0.0 |
| 0.3283 | 0.54 | 1000 | 0.3042 | 0.5105 | 0.6749 | 0.0 |
| 0.3246 | 0.68 | 1250 | 0.3068 | 0.5101 | 0.6747 | 0.0 |
| 0.3264 | 0.82 | 1500 | 0.3028 | 0.5152 | 0.6771 | 0.0 |
| 0.3365 | 0.95 | 1750 | 0.3051 | 0.5103 | 0.6747 | 0.0 |
| 0.3269 | 1.09 | 2000 | 0.3042 | 0.5103 | 0.6747 | 0.0 |
| 0.3173 | 1.22 | 2250 | 0.3059 | 0.5103 | 0.6747 | 0.0 |
| 0.3127 | 1.36 | 2500 | 0.3053 | 0.5110 | 0.6750 | 0.0 |
| 0.3211 | 1.49 | 2750 | 0.3067 | 0.5103 | 0.6747 | 0.0 |
| 0.3155 | 1.63 | 3000 | 0.3067 | 0.5103 | 0.6747 | 0.0 |
| 0.319 | 1.77 | 3250 | 0.3051 | 0.5103 | 0.6747 | 0.0 |
| 0.3286 | 1.9 | 3500 | 0.3042 | 0.5103 | 0.6747 | 0.0 |
| 0.3243 | 2.04 | 3750 | 0.3051 | 0.5103 | 0.6747 | 0.0 |
| 0.3111 | 2.17 | 4000 | 0.3049 | 0.5103 | 0.6747 | 0.0 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|