Update README.md
Browse files
README.md
CHANGED
|
@@ -2,43 +2,15 @@
|
|
| 2 |
library_name: transformers
|
| 3 |
license: apache-2.0
|
| 4 |
base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
|
| 5 |
-
|
| 6 |
-
-
|
| 7 |
-
- case-studies
|
| 8 |
-
- japanese
|
| 9 |
-
- qwen
|
| 10 |
-
- merged
|
| 11 |
---
|
| 12 |
|
| 13 |
-
# rshaikh22/Qwen3_30B_Instruct_CQA_Medical
|
| 14 |
|
| 15 |
-
This is a merged model combining Qwen/Qwen3-30B-A3B-Instruct-2507 with a LoRA adapter fine-tuned on Japanese medical case studies.
|
| 16 |
-
|
| 17 |
-
## Model Details
|
| 18 |
-
|
| 19 |
-
- **Base Model**: Qwen/Qwen3-30B-A3B-Instruct-2507
|
| 20 |
-
- **Training Data**: Japanese medical case studies (~93,563 examples)
|
| 21 |
-
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - Merged
|
| 22 |
-
- **Model Type**: Merged Causal LM (no adapter needed)
|
| 23 |
-
|
| 24 |
-
## Usage
|
| 25 |
-
|
| 26 |
-
```python
|
| 27 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 28 |
-
|
| 29 |
-
model = AutoModelForCausalLM.from_pretrained("rshaikh22/Qwen3_30B_Instruct_CQA_Medical", trust_remote_code=True)
|
| 30 |
-
tokenizer = AutoTokenizer.from_pretrained("rshaikh22/Qwen3_30B_Instruct_CQA_Medical", trust_remote_code=True)
|
| 31 |
-
|
| 32 |
-
# Use the model
|
| 33 |
-
prompt = "Your prompt here"
|
| 34 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
| 35 |
-
outputs = model.generate(**inputs, max_length=200)
|
| 36 |
-
print(tokenizer.decode(outputs[0]))
|
| 37 |
-
```
|
| 38 |
|
| 39 |
## Training Details
|
| 40 |
|
| 41 |
- **Epochs**: 2
|
| 42 |
- **Learning Rate**: 5e-4
|
| 43 |
- **Batch Size**: 24
|
| 44 |
-
- **Training Examples**: ~93,563
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
license: apache-2.0
|
| 4 |
base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
|
| 5 |
+
language:
|
| 6 |
+
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
---
|
| 8 |
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
## Training Details
|
| 12 |
|
| 13 |
- **Epochs**: 2
|
| 14 |
- **Learning Rate**: 5e-4
|
| 15 |
- **Batch Size**: 24
|
| 16 |
+
- **Training Examples**: ~93,563
|