rshaikh22 commited on
Commit
4f4532f
·
verified ·
1 Parent(s): 7fa3ef5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -31
README.md CHANGED
@@ -2,43 +2,15 @@
2
  library_name: transformers
3
  license: apache-2.0
4
  base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
5
- tags:
6
- - medical
7
- - case-studies
8
- - japanese
9
- - qwen
10
- - merged
11
  ---
12
 
13
- # rshaikh22/Qwen3_30B_Instruct_CQA_Medical
14
 
15
- This is a merged model combining Qwen/Qwen3-30B-A3B-Instruct-2507 with a LoRA adapter fine-tuned on Japanese medical case studies.
16
-
17
- ## Model Details
18
-
19
- - **Base Model**: Qwen/Qwen3-30B-A3B-Instruct-2507
20
- - **Training Data**: Japanese medical case studies (~93,563 examples)
21
- - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - Merged
22
- - **Model Type**: Merged Causal LM (no adapter needed)
23
-
24
- ## Usage
25
-
26
- ```python
27
- from transformers import AutoModelForCausalLM, AutoTokenizer
28
-
29
- model = AutoModelForCausalLM.from_pretrained("rshaikh22/Qwen3_30B_Instruct_CQA_Medical", trust_remote_code=True)
30
- tokenizer = AutoTokenizer.from_pretrained("rshaikh22/Qwen3_30B_Instruct_CQA_Medical", trust_remote_code=True)
31
-
32
- # Use the model
33
- prompt = "Your prompt here"
34
- inputs = tokenizer(prompt, return_tensors="pt")
35
- outputs = model.generate(**inputs, max_length=200)
36
- print(tokenizer.decode(outputs[0]))
37
- ```
38
 
39
  ## Training Details
40
 
41
  - **Epochs**: 2
42
  - **Learning Rate**: 5e-4
43
  - **Batch Size**: 24
44
- - **Training Examples**: ~93,563
 
2
  library_name: transformers
3
  license: apache-2.0
4
  base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
5
+ language:
6
+ - en
 
 
 
 
7
  ---
8
 
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  ## Training Details
12
 
13
  - **Epochs**: 2
14
  - **Learning Rate**: 5e-4
15
  - **Batch Size**: 24
16
+ - **Training Examples**: ~93,563