Update README.md
Browse files
README.md
CHANGED
|
@@ -2,57 +2,6 @@
|
|
| 2 |
library_name: transformers
|
| 3 |
license: apache-2.0
|
| 4 |
base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
|
| 5 |
-
|
| 6 |
-
-
|
| 7 |
-
|
| 8 |
-
- japanese
|
| 9 |
-
- qwen
|
| 10 |
-
- lora
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
# rshaikh22/Qwen3_30B_Instruct_CQA_Medical
|
| 14 |
-
|
| 15 |
-
This is a LoRA (Low-Rank Adaptation) fine-tuned version of Qwen/Qwen3-30B-A3B-Instruct-2507 trained on Japanese medical case studies.
|
| 16 |
-
|
| 17 |
-
## Model Details
|
| 18 |
-
|
| 19 |
-
- **Base Model**: Qwen/Qwen3-30B-A3B-Instruct-2507
|
| 20 |
-
- **Training Data**: Japanese medical case studies (~93,563 examples)
|
| 21 |
-
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
|
| 22 |
-
- **Model Type**: LoRA Adapter (requires base model to load)
|
| 23 |
-
|
| 24 |
-
## Usage
|
| 25 |
-
|
| 26 |
-
### Using with PEFT (Recommended)
|
| 27 |
-
|
| 28 |
-
```python
|
| 29 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 30 |
-
from peft import PeftModel
|
| 31 |
-
|
| 32 |
-
# Load base model
|
| 33 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
-
"Qwen/Qwen3-30B-A3B-Instruct-2507",
|
| 35 |
-
trust_remote_code=True,
|
| 36 |
-
torch_dtype="auto"
|
| 37 |
-
)
|
| 38 |
-
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-30B-A3B-Instruct-2507", trust_remote_code=True)
|
| 39 |
-
|
| 40 |
-
# Load LoRA adapter
|
| 41 |
-
model = PeftModel.from_pretrained(base_model, "rshaikh22/Qwen3_30B_Instruct_CQA_Medical")
|
| 42 |
-
model = model.merge_and_unload() # Optional: merge adapter into base model
|
| 43 |
-
|
| 44 |
-
# Use the model
|
| 45 |
-
prompt = "Your prompt here"
|
| 46 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
| 47 |
-
outputs = model.generate(**inputs, max_length=200)
|
| 48 |
-
print(tokenizer.decode(outputs[0]))
|
| 49 |
-
```
|
| 50 |
-
|
| 51 |
-
### Direct Loading (if adapter is merged)
|
| 52 |
-
|
| 53 |
-
```python
|
| 54 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 55 |
-
|
| 56 |
-
model = AutoModelForCausalLM.from_pretrained("rshaikh22/Qwen3_30B_Instruct_CQA_Medical", trust_remote_code=True)
|
| 57 |
-
tokenizer = AutoTokenizer.from_pretrained("rshaikh22/Qwen3_30B_Instruct_CQA_Medical", trust_remote_code=True)
|
| 58 |
-
```
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
license: apache-2.0
|
| 4 |
base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|