nielsr HF Staff commited on
Commit
39ccc9a
·
verified ·
1 Parent(s): da3a587

Improve model card: Add `library_name` and prominent links to paper and GitHub

Browse files

This PR enhances the model card by:

- Adding `library_name: transformers` to the metadata. This is supported by the `config.json` (`"architectures": ["Qwen3ForCausalLM"]`, `"model_type": "qwen3"`, `"transformers_version": "4.53.0"`), which enables the "How to use" widget for direct integration with the Hugging Face `transformers` library.
- Adding prominent links to the paper ([rStar2-Agent: Agentic Reasoning Technical Report](https://huggingface.co/papers/2508.20722)) and the GitHub repository ([https://github.com/microsoft/rStar](https://github.com/microsoft/rStar)) at the top of the model card content for better visibility and easier access to the research and code.
- The existing "Usage", "Citation", and "License" sections remain unchanged as they are already comprehensive and accurate.

These updates will improve the discoverability and usability of the model for the community.

Files changed (1) hide show
  1. README.md +18 -8
README.md CHANGED
@@ -1,24 +1,29 @@
1
  ---
 
 
 
2
  license: mit
 
3
  tags:
4
  - reinforcement-learning
5
  - agentic-reasoning
6
  - math-reasoning
7
  - tool-use
8
- language:
9
- - en
10
- - zh
11
- pipeline_tag: text-generation
12
  ---
 
13
  # rStar2-Agent-14B: Advanced Agentic Reasoning Model
14
 
 
 
 
15
  ## Model Description
16
 
17
  This is a reproduced version of rStar2-Agent, a 14B parameter math reasoning model that achieves performance comparable to 67B DeepSeek-R1 through pure agentic reinforcement learning. The model excels at planning, reasoning, and autonomously using coding tools to efficiently explore, verify, and reflect for complex problem-solving.
18
 
19
  ## Usage
20
 
21
- This is an example usage. To reproduce the math evaluation results in technical report, please refer to [@microsoft/rstar](https://github.com/microsoft/rstar).
22
 
23
  ### 1. Start SGLang Server
24
 
@@ -56,7 +61,11 @@ tools = [
56
  "type": "function",
57
  "function": {
58
  "name": "execute_python_code_with_standard_io",
59
- "description": "Execute Python code with standard input and capture standard output.\nThis function takes a Python code string and an input string, provides the input string\nthrough standard input (stdin) to the code, and captures and returns any output produced\nthrough standard output (stdout). If the executed code raises an exception, the error\nmessage will be captured and returned instead.",
 
 
 
 
60
  "parameters": {
61
  "type": "object",
62
  "properties": {
@@ -144,7 +153,8 @@ while True:
144
  for tool_call in response.choices[0].message.tool_calls:
145
  function_args = json.loads(tool_call.function.arguments)
146
 
147
- print(f">>> Executing Code:\n{function_args['code']}")
 
148
  input_text = function_args.get('input', '')
149
  print(f">>> With Input: {input_text if input_text else '(no input)'}")
150
 
@@ -186,4 +196,4 @@ If you use this model in your research, please cite:
186
 
187
  ## License
188
 
189
- This model is released under the MIT License.
 
1
  ---
2
+ language:
3
+ - en
4
+ - zh
5
  license: mit
6
+ pipeline_tag: text-generation
7
  tags:
8
  - reinforcement-learning
9
  - agentic-reasoning
10
  - math-reasoning
11
  - tool-use
12
+ library_name: transformers
 
 
 
13
  ---
14
+
15
  # rStar2-Agent-14B: Advanced Agentic Reasoning Model
16
 
17
+ This model is part of the research presented in the paper [rStar2-Agent: Agentic Reasoning Technical Report](https://huggingface.co/papers/2508.20722).
18
+ Find the official code and training recipes on the [GitHub repository](https://github.com/microsoft/rStar).
19
+
20
  ## Model Description
21
 
22
  This is a reproduced version of rStar2-Agent, a 14B parameter math reasoning model that achieves performance comparable to 67B DeepSeek-R1 through pure agentic reinforcement learning. The model excels at planning, reasoning, and autonomously using coding tools to efficiently explore, verify, and reflect for complex problem-solving.
23
 
24
  ## Usage
25
 
26
+ This is an example usage. To reproduce the math evaluation results in technical report, please refer to [@microsoft/rstar](https://github.com/microsoft/rStar).
27
 
28
  ### 1. Start SGLang Server
29
 
 
61
  "type": "function",
62
  "function": {
63
  "name": "execute_python_code_with_standard_io",
64
+ "description": "Execute Python code with standard input and capture standard output.
65
+ This function takes a Python code string and an input string, provides the input string
66
+ through standard input (stdin) to the code, and captures and returns any output produced
67
+ through standard output (stdout). If the executed code raises an exception, the error
68
+ message will be captured and returned instead.",
69
  "parameters": {
70
  "type": "object",
71
  "properties": {
 
153
  for tool_call in response.choices[0].message.tool_calls:
154
  function_args = json.loads(tool_call.function.arguments)
155
 
156
+ print(f">>> Executing Code:
157
+ {function_args['code']}")
158
  input_text = function_args.get('input', '')
159
  print(f">>> With Input: {input_text if input_text else '(no input)'}")
160
 
 
196
 
197
  ## License
198
 
199
+ This model is released under the MIT License.