Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- chat_template.jinja +331 -0
- config.json +68 -0
- generation_config.json +11 -0
- latest +1 -0
- model-00001-of-00009.safetensors +3 -0
- model-00002-of-00009.safetensors +3 -0
- model-00003-of-00009.safetensors +3 -0
- model-00004-of-00009.safetensors +3 -0
- model-00005-of-00009.safetensors +3 -0
- model-00006-of-00009.safetensors +3 -0
- model-00007-of-00009.safetensors +3 -0
- model-00008-of-00009.safetensors +3 -0
- model-00009-of-00009.safetensors +3 -0
- model.safetensors.index.json +419 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_10.pth +3 -0
- rng_state_11.pth +3 -0
- rng_state_12.pth +3 -0
- rng_state_13.pth +3 -0
- rng_state_14.pth +3 -0
- rng_state_15.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- rng_state_8.pth +3 -0
- rng_state_9.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +3 -0
- tokenizer_config.json +185 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{#-
|
| 2 |
+
In addition to the normal inputs of `messages` and `tools`, this template also accepts the
|
| 3 |
+
following kwargs:
|
| 4 |
+
- "builtin_tools": A list, can contain "browser" and/or "python".
|
| 5 |
+
- "model_identity": A string that optionally describes the model identity.
|
| 6 |
+
- "reasoning_effort": A string that describes the reasoning effort, defaults to "medium".
|
| 7 |
+
#}
|
| 8 |
+
|
| 9 |
+
{#- Tool Definition Rendering ============================================== #}
|
| 10 |
+
{%- macro render_typescript_type(param_spec, required_params, is_nullable=false) -%}
|
| 11 |
+
{%- if param_spec.type == "array" -%}
|
| 12 |
+
{%- if param_spec['items'] -%}
|
| 13 |
+
{%- if param_spec['items']['type'] == "string" -%}
|
| 14 |
+
{{- "string[]" }}
|
| 15 |
+
{%- elif param_spec['items']['type'] == "number" -%}
|
| 16 |
+
{{- "number[]" }}
|
| 17 |
+
{%- elif param_spec['items']['type'] == "integer" -%}
|
| 18 |
+
{{- "number[]" }}
|
| 19 |
+
{%- elif param_spec['items']['type'] == "boolean" -%}
|
| 20 |
+
{{- "boolean[]" }}
|
| 21 |
+
{%- else -%}
|
| 22 |
+
{%- set inner_type = render_typescript_type(param_spec['items'], required_params) -%}
|
| 23 |
+
{%- if inner_type == "object | object" or inner_type|length > 50 -%}
|
| 24 |
+
{{- "any[]" }}
|
| 25 |
+
{%- else -%}
|
| 26 |
+
{{- inner_type + "[]" }}
|
| 27 |
+
{%- endif -%}
|
| 28 |
+
{%- endif -%}
|
| 29 |
+
{%- if param_spec.nullable -%}
|
| 30 |
+
{{- " | null" }}
|
| 31 |
+
{%- endif -%}
|
| 32 |
+
{%- else -%}
|
| 33 |
+
{{- "any[]" }}
|
| 34 |
+
{%- if param_spec.nullable -%}
|
| 35 |
+
{{- " | null" }}
|
| 36 |
+
{%- endif -%}
|
| 37 |
+
{%- endif -%}
|
| 38 |
+
{%- elif param_spec.type is defined and param_spec.type is iterable and param_spec.type is not string and param_spec.type is not mapping and param_spec.type[0] is defined -%}
|
| 39 |
+
{#- Handle array of types like ["object", "object"] from Union[dict, list] #}
|
| 40 |
+
{%- if param_spec.type | length > 1 -%}
|
| 41 |
+
{{- param_spec.type | join(" | ") }}
|
| 42 |
+
{%- else -%}
|
| 43 |
+
{{- param_spec.type[0] }}
|
| 44 |
+
{%- endif -%}
|
| 45 |
+
{%- elif param_spec.oneOf -%}
|
| 46 |
+
{#- Handle oneOf schemas - check for complex unions and fallback to any #}
|
| 47 |
+
{%- set has_object_variants = false -%}
|
| 48 |
+
{%- for variant in param_spec.oneOf -%}
|
| 49 |
+
{%- if variant.type == "object" -%}
|
| 50 |
+
{%- set has_object_variants = true -%}
|
| 51 |
+
{%- endif -%}
|
| 52 |
+
{%- endfor -%}
|
| 53 |
+
{%- if has_object_variants and param_spec.oneOf|length > 1 -%}
|
| 54 |
+
{{- "any" }}
|
| 55 |
+
{%- else -%}
|
| 56 |
+
{%- for variant in param_spec.oneOf -%}
|
| 57 |
+
{{- render_typescript_type(variant, required_params) -}}
|
| 58 |
+
{%- if variant.description %}
|
| 59 |
+
{{- "// " + variant.description }}
|
| 60 |
+
{%- endif -%}
|
| 61 |
+
{%- if variant.default is defined %}
|
| 62 |
+
{{ "// default: " + variant.default|tojson }}
|
| 63 |
+
{%- endif -%}
|
| 64 |
+
{%- if not loop.last %}
|
| 65 |
+
{{- " | " }}
|
| 66 |
+
{% endif -%}
|
| 67 |
+
{%- endfor -%}
|
| 68 |
+
{%- endif -%}
|
| 69 |
+
{%- elif param_spec.type == "string" -%}
|
| 70 |
+
{%- if param_spec.enum -%}
|
| 71 |
+
{{- '"' + param_spec.enum|join('" | "') + '"' -}}
|
| 72 |
+
{%- else -%}
|
| 73 |
+
{{- "string" }}
|
| 74 |
+
{%- if param_spec.nullable %}
|
| 75 |
+
{{- " | null" }}
|
| 76 |
+
{%- endif -%}
|
| 77 |
+
{%- endif -%}
|
| 78 |
+
{%- elif param_spec.type == "number" -%}
|
| 79 |
+
{{- "number" }}
|
| 80 |
+
{%- elif param_spec.type == "integer" -%}
|
| 81 |
+
{{- "number" }}
|
| 82 |
+
{%- elif param_spec.type == "boolean" -%}
|
| 83 |
+
{{- "boolean" }}
|
| 84 |
+
|
| 85 |
+
{%- elif param_spec.type == "object" -%}
|
| 86 |
+
{%- if param_spec.properties -%}
|
| 87 |
+
{{- "{\n" }}
|
| 88 |
+
{%- for prop_name, prop_spec in param_spec.properties.items() -%}
|
| 89 |
+
{{- prop_name -}}
|
| 90 |
+
{%- if prop_name not in (param_spec.required or []) -%}
|
| 91 |
+
{{- "?" }}
|
| 92 |
+
{%- endif -%}
|
| 93 |
+
{{- ": " }}
|
| 94 |
+
{{ render_typescript_type(prop_spec, param_spec.required or []) }}
|
| 95 |
+
{%- if not loop.last -%}
|
| 96 |
+
{{-", " }}
|
| 97 |
+
{%- endif -%}
|
| 98 |
+
{%- endfor -%}
|
| 99 |
+
{{- "}" }}
|
| 100 |
+
{%- else -%}
|
| 101 |
+
{{- "object" }}
|
| 102 |
+
{%- endif -%}
|
| 103 |
+
{%- else -%}
|
| 104 |
+
{{- "any" }}
|
| 105 |
+
{%- endif -%}
|
| 106 |
+
{%- endmacro -%}
|
| 107 |
+
|
| 108 |
+
{%- macro render_tool_namespace(namespace_name, tools) -%}
|
| 109 |
+
{{- "## " + namespace_name + "\n\n" }}
|
| 110 |
+
{{- "namespace " + namespace_name + " {\n\n" }}
|
| 111 |
+
{%- for tool in tools %}
|
| 112 |
+
{%- set tool = tool.function %}
|
| 113 |
+
{{- "// " + tool.description + "\n" }}
|
| 114 |
+
{{- "type "+ tool.name + " = " }}
|
| 115 |
+
{%- if tool.parameters and tool.parameters.properties %}
|
| 116 |
+
{{- "(_: {\n" }}
|
| 117 |
+
{%- for param_name, param_spec in tool.parameters.properties.items() %}
|
| 118 |
+
{%- if param_spec.description %}
|
| 119 |
+
{{- "// " + param_spec.description + "\n" }}
|
| 120 |
+
{%- endif %}
|
| 121 |
+
{{- param_name }}
|
| 122 |
+
{%- if param_name not in (tool.parameters.required or []) -%}
|
| 123 |
+
{{- "?" }}
|
| 124 |
+
{%- endif -%}
|
| 125 |
+
{{- ": " }}
|
| 126 |
+
{{- render_typescript_type(param_spec, tool.parameters.required or []) }}
|
| 127 |
+
{%- if param_spec.default is defined -%}
|
| 128 |
+
{%- if param_spec.enum %}
|
| 129 |
+
{{- ", // default: " + param_spec.default }}
|
| 130 |
+
{%- elif param_spec.oneOf %}
|
| 131 |
+
{{- "// default: " + param_spec.default }}
|
| 132 |
+
{%- else %}
|
| 133 |
+
{{- ", // default: " + param_spec.default|tojson }}
|
| 134 |
+
{%- endif -%}
|
| 135 |
+
{%- endif -%}
|
| 136 |
+
{%- if not loop.last %}
|
| 137 |
+
{{- ",\n" }}
|
| 138 |
+
{%- else %}
|
| 139 |
+
{{- ",\n" }}
|
| 140 |
+
{%- endif -%}
|
| 141 |
+
{%- endfor %}
|
| 142 |
+
{{- "}) => any;\n\n" }}
|
| 143 |
+
{%- else -%}
|
| 144 |
+
{{- "() => any;\n\n" }}
|
| 145 |
+
{%- endif -%}
|
| 146 |
+
{%- endfor %}
|
| 147 |
+
{{- "} // namespace " + namespace_name }}
|
| 148 |
+
{%- endmacro -%}
|
| 149 |
+
|
| 150 |
+
{%- macro render_builtin_tools(browser_tool, python_tool) -%}
|
| 151 |
+
{%- if browser_tool %}
|
| 152 |
+
{{- "## browser\n\n" }}
|
| 153 |
+
{{- "// Tool for browsing.\n" }}
|
| 154 |
+
{{- "// The `cursor` appears in brackets before each browsing display: `[{cursor}]`.\n" }}
|
| 155 |
+
{{- "// Cite information from the tool using the following format:\n" }}
|
| 156 |
+
{{- "// `【{cursor}†L{line_start}(-L{line_end})?】`, for example: `【6†L9-L11】` or `【8†L3】`.\n" }}
|
| 157 |
+
{{- "// Do not quote more than 10 words directly from the tool output.\n" }}
|
| 158 |
+
{{- "// sources=web (default: web)\n" }}
|
| 159 |
+
{{- "namespace browser {\n\n" }}
|
| 160 |
+
{{- "// Searches for information related to `query` and displays `topn` results.\n" }}
|
| 161 |
+
{{- "type search = (_: {\n" }}
|
| 162 |
+
{{- "query: string,\n" }}
|
| 163 |
+
{{- "topn?: number, // default: 10\n" }}
|
| 164 |
+
{{- "source?: string,\n" }}
|
| 165 |
+
{{- "}) => any;\n\n" }}
|
| 166 |
+
{{- "// Opens the link `id` from the page indicated by `cursor` starting at line number `loc`, showing `num_lines` lines.\n" }}
|
| 167 |
+
{{- "// Valid link ids are displayed with the formatting: `【{id}†.*】`.\n" }}
|
| 168 |
+
{{- "// If `cursor` is not provided, the most recent page is implied.\n" }}
|
| 169 |
+
{{- "// If `id` is a string, it is treated as a fully qualified URL associated with `source`.\n" }}
|
| 170 |
+
{{- "// If `loc` is not provided, the viewport will be positioned at the beginning of the document or centered on the most relevant passage, if available.\n" }}
|
| 171 |
+
{{- "// Use this function without `id` to scroll to a new location of an opened page.\n" }}
|
| 172 |
+
{{- "type open = (_: {\n" }}
|
| 173 |
+
{{- "id?: number | string, // default: -1\n" }}
|
| 174 |
+
{{- "cursor?: number, // default: -1\n" }}
|
| 175 |
+
{{- "loc?: number, // default: -1\n" }}
|
| 176 |
+
{{- "num_lines?: number, // default: -1\n" }}
|
| 177 |
+
{{- "view_source?: boolean, // default: false\n" }}
|
| 178 |
+
{{- "source?: string,\n" }}
|
| 179 |
+
{{- "}) => any;\n\n" }}
|
| 180 |
+
{{- "// Finds exact matches of `pattern` in the current page, or the page given by `cursor`.\n" }}
|
| 181 |
+
{{- "type find = (_: {\n" }}
|
| 182 |
+
{{- "pattern: string,\n" }}
|
| 183 |
+
{{- "cursor?: number, // default: -1\n" }}
|
| 184 |
+
{{- "}) => any;\n\n" }}
|
| 185 |
+
{{- "} // namespace browser\n\n" }}
|
| 186 |
+
{%- endif -%}
|
| 187 |
+
|
| 188 |
+
{%- if python_tool %}
|
| 189 |
+
{{- "## python\n\n" }}
|
| 190 |
+
{{- "Use this tool to execute Python code in your chain of thought. The code will not be shown to the user. This tool should be used for internal reasoning, but not for code that is intended to be visible to the user (e.g. when creating plots, tables, or files).\n\n" }}
|
| 191 |
+
{{- "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 120.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is UNKNOWN. Depends on the cluster.\n\n" }}
|
| 192 |
+
{%- endif -%}
|
| 193 |
+
{%- endmacro -%}
|
| 194 |
+
|
| 195 |
+
{#- System Message Construction ============================================ #}
|
| 196 |
+
{%- macro build_system_message() -%}
|
| 197 |
+
{%- if model_identity is not defined %}
|
| 198 |
+
{%- set model_identity = "You are ChatGPT, a large language model trained by OpenAI." %}
|
| 199 |
+
{%- endif %}
|
| 200 |
+
{{- model_identity + "\n" }}
|
| 201 |
+
{{- "Knowledge cutoff: 2024-06\n" }}
|
| 202 |
+
{{- "Current date: " + strftime_now("%Y-%m-%d") + "\n\n" }}
|
| 203 |
+
{%- if reasoning_effort is not defined %}
|
| 204 |
+
{%- set reasoning_effort = "medium" %}
|
| 205 |
+
{%- endif %}
|
| 206 |
+
{{- "Reasoning: " + reasoning_effort + "\n\n" }}
|
| 207 |
+
{%- if builtin_tools %}
|
| 208 |
+
{{- "# Tools\n\n" }}
|
| 209 |
+
{%- set available_builtin_tools = namespace(browser=false, python=false) %}
|
| 210 |
+
{%- for tool in builtin_tools %}
|
| 211 |
+
{%- if tool == "browser" %}
|
| 212 |
+
{%- set available_builtin_tools.browser = true %}
|
| 213 |
+
{%- elif tool == "python" %}
|
| 214 |
+
{%- set available_builtin_tools.python = true %}
|
| 215 |
+
{%- endif %}
|
| 216 |
+
{%- endfor %}
|
| 217 |
+
{{- render_builtin_tools(available_builtin_tools.browser, available_builtin_tools.python) }}
|
| 218 |
+
{%- endif -%}
|
| 219 |
+
{{- "# Valid channels: analysis, commentary, final. Channel must be included for every message." }}
|
| 220 |
+
{%- if tools -%}
|
| 221 |
+
{{- "\nCalls to these tools must go to the commentary channel: 'functions'." }}
|
| 222 |
+
{%- endif -%}
|
| 223 |
+
{%- endmacro -%}
|
| 224 |
+
|
| 225 |
+
{#- Main Template Logic ================================================= #}
|
| 226 |
+
{#- Set defaults #}
|
| 227 |
+
|
| 228 |
+
{#- Render system message #}
|
| 229 |
+
{{- "<|start|>system<|message|>" }}
|
| 230 |
+
{{- build_system_message() }}
|
| 231 |
+
{{- "<|end|>" }}
|
| 232 |
+
|
| 233 |
+
{#- Extract developer message #}
|
| 234 |
+
{%- if messages[0].role == "developer" or messages[0].role == "system" %}
|
| 235 |
+
{%- set developer_message = messages[0].content %}
|
| 236 |
+
{%- set loop_messages = messages[1:] %}
|
| 237 |
+
{%- else %}
|
| 238 |
+
{%- set developer_message = "" %}
|
| 239 |
+
{%- set loop_messages = messages %}
|
| 240 |
+
{%- endif %}
|
| 241 |
+
|
| 242 |
+
{#- Render developer message #}
|
| 243 |
+
{%- if developer_message or tools %}
|
| 244 |
+
{{- "<|start|>developer<|message|>" }}
|
| 245 |
+
{%- if developer_message %}
|
| 246 |
+
{{- "# Instructions\n\n" }}
|
| 247 |
+
{{- developer_message }}
|
| 248 |
+
{{- "\n\n" }}
|
| 249 |
+
{%- endif %}
|
| 250 |
+
{%- if tools -%}
|
| 251 |
+
{{- "# Tools\n\n" }}
|
| 252 |
+
{{- render_tool_namespace("functions", tools) }}
|
| 253 |
+
{%- endif -%}
|
| 254 |
+
{{- "<|end|>" }}
|
| 255 |
+
{%- endif %}
|
| 256 |
+
|
| 257 |
+
{#- Render messages #}
|
| 258 |
+
{%- set last_tool_call = namespace(name=none) %}
|
| 259 |
+
{%- for message in loop_messages -%}
|
| 260 |
+
{#- At this point only assistant/user/tool messages should remain #}
|
| 261 |
+
{%- if message.role == 'assistant' -%}
|
| 262 |
+
{#- Checks to ensure the messages are being passed in the format we expect #}
|
| 263 |
+
{%- if "content" in message %}
|
| 264 |
+
{%- if "<|channel|>analysis<|message|>" in message.content or "<|channel|>final<|message|>" in message.content %}
|
| 265 |
+
{{- raise_exception("You have passed a message containing <|channel|> tags in the content field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
|
| 266 |
+
{%- endif %}
|
| 267 |
+
{%- endif %}
|
| 268 |
+
{%- if "thinking" in message %}
|
| 269 |
+
{%- if "<|channel|>analysis<|message|>" in message.thinking or "<|channel|>final<|message|>" in message.thinking %}
|
| 270 |
+
{{- raise_exception("You have passed a message containing <|channel|> tags in the thinking field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
|
| 271 |
+
{%- endif %}
|
| 272 |
+
{%- endif %}
|
| 273 |
+
{%- if "tool_calls" in message %}
|
| 274 |
+
{#- We need very careful handling here - we want to drop the tool call analysis message if the model #}
|
| 275 |
+
{#- has output a later <|final|> message, but otherwise we want to retain it. This is the only case #}
|
| 276 |
+
{#- when we render CoT/analysis messages in inference. #}
|
| 277 |
+
{%- set future_final_message = namespace(found=false) %}
|
| 278 |
+
{%- for future_message in loop_messages[loop.index:] %}
|
| 279 |
+
{%- if future_message.role == 'assistant' and "tool_calls" not in future_message %}
|
| 280 |
+
{%- set future_final_message.found = true %}
|
| 281 |
+
{%- endif %}
|
| 282 |
+
{%- endfor %}
|
| 283 |
+
{#- We assume max 1 tool call per message, and so we infer the tool call name #}
|
| 284 |
+
{#- in "tool" messages from the most recent assistant tool call name #}
|
| 285 |
+
{%- set tool_call = message.tool_calls[0] %}
|
| 286 |
+
{%- if tool_call.function %}
|
| 287 |
+
{%- set tool_call = tool_call.function %}
|
| 288 |
+
{%- endif %}
|
| 289 |
+
{%- if message.content and message.thinking %}
|
| 290 |
+
{{- raise_exception("Cannot pass both content and thinking in an assistant message with tool calls! Put the analysis message in one or the other, but not both.") }}
|
| 291 |
+
{%- elif message.content and not future_final_message.found %}
|
| 292 |
+
{{- "<|start|>assistant<|channel|>analysis<|message|>" + message.content + "<|end|>" }}
|
| 293 |
+
{%- elif message.thinking and not future_final_message.found %}
|
| 294 |
+
{{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
|
| 295 |
+
{%- endif %}
|
| 296 |
+
{{- "<|start|>assistant to=" }}
|
| 297 |
+
{{- "functions." + tool_call.name + "<|channel|>commentary " }}
|
| 298 |
+
{{- (tool_call.content_type if tool_call.content_type is defined else "json") + "<|message|>" }}
|
| 299 |
+
{{- tool_call.arguments|tojson }}
|
| 300 |
+
{{- "<|call|>" }}
|
| 301 |
+
{%- set last_tool_call.name = tool_call.name %}
|
| 302 |
+
{%- elif loop.last and not add_generation_prompt %}
|
| 303 |
+
{#- Only render the CoT if the final turn is an assistant turn and add_generation_prompt is false #}
|
| 304 |
+
{#- This is a situation that should only occur in training, never in inference. #}
|
| 305 |
+
{%- if "thinking" in message %}
|
| 306 |
+
{{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
|
| 307 |
+
{%- endif %}
|
| 308 |
+
{#- <|return|> indicates the end of generation, but <|end|> does not #}
|
| 309 |
+
{#- <|return|> should never be an input to the model, but we include it as the final token #}
|
| 310 |
+
{#- when training, so the model learns to emit it. #}
|
| 311 |
+
{{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|return|>" }}
|
| 312 |
+
{%- else %}
|
| 313 |
+
{#- CoT is dropped during all previous turns, so we never render it for inference #}
|
| 314 |
+
{{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|end|>" }}
|
| 315 |
+
{%- set last_tool_call.name = none %}
|
| 316 |
+
{%- endif %}
|
| 317 |
+
{%- elif message.role == 'tool' -%}
|
| 318 |
+
{%- if last_tool_call.name is none %}
|
| 319 |
+
{{- raise_exception("Message has tool role, but there was no previous assistant message with a tool call!") }}
|
| 320 |
+
{%- endif %}
|
| 321 |
+
{{- "<|start|>functions." + last_tool_call.name }}
|
| 322 |
+
{{- " to=assistant<|channel|>commentary<|message|>" + message.content|tojson + "<|end|>" }}
|
| 323 |
+
{%- elif message.role == 'user' -%}
|
| 324 |
+
{{- "<|start|>user<|message|>" + message.content + "<|end|>" }}
|
| 325 |
+
{%- endif -%}
|
| 326 |
+
{%- endfor -%}
|
| 327 |
+
|
| 328 |
+
{#- Generation prompt #}
|
| 329 |
+
{%- if add_generation_prompt -%}
|
| 330 |
+
<|start|>assistant
|
| 331 |
+
{%- endif -%}
|
config.json
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"GptOssForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": true,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"eos_token_id": 200002,
|
| 8 |
+
"experts_per_token": 4,
|
| 9 |
+
"head_dim": 64,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 2880,
|
| 12 |
+
"initial_context_length": 4096,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 2880,
|
| 15 |
+
"layer_types": [
|
| 16 |
+
"sliding_attention",
|
| 17 |
+
"full_attention",
|
| 18 |
+
"sliding_attention",
|
| 19 |
+
"full_attention",
|
| 20 |
+
"sliding_attention",
|
| 21 |
+
"full_attention",
|
| 22 |
+
"sliding_attention",
|
| 23 |
+
"full_attention",
|
| 24 |
+
"sliding_attention",
|
| 25 |
+
"full_attention",
|
| 26 |
+
"sliding_attention",
|
| 27 |
+
"full_attention",
|
| 28 |
+
"sliding_attention",
|
| 29 |
+
"full_attention",
|
| 30 |
+
"sliding_attention",
|
| 31 |
+
"full_attention",
|
| 32 |
+
"sliding_attention",
|
| 33 |
+
"full_attention",
|
| 34 |
+
"sliding_attention",
|
| 35 |
+
"full_attention",
|
| 36 |
+
"sliding_attention",
|
| 37 |
+
"full_attention",
|
| 38 |
+
"sliding_attention",
|
| 39 |
+
"full_attention"
|
| 40 |
+
],
|
| 41 |
+
"max_position_embeddings": 131072,
|
| 42 |
+
"model_type": "gpt_oss",
|
| 43 |
+
"num_attention_heads": 64,
|
| 44 |
+
"num_experts_per_tok": 4,
|
| 45 |
+
"num_hidden_layers": 24,
|
| 46 |
+
"num_key_value_heads": 8,
|
| 47 |
+
"num_local_experts": 32,
|
| 48 |
+
"output_router_logits": false,
|
| 49 |
+
"pad_token_id": 199999,
|
| 50 |
+
"rms_norm_eps": 1e-05,
|
| 51 |
+
"rope_scaling": {
|
| 52 |
+
"beta_fast": 32.0,
|
| 53 |
+
"beta_slow": 1.0,
|
| 54 |
+
"factor": 32.0,
|
| 55 |
+
"original_max_position_embeddings": 4096,
|
| 56 |
+
"rope_type": "yarn",
|
| 57 |
+
"truncate": false
|
| 58 |
+
},
|
| 59 |
+
"rope_theta": 150000,
|
| 60 |
+
"router_aux_loss_coef": 0.9,
|
| 61 |
+
"sliding_window": 128,
|
| 62 |
+
"swiglu_limit": 7.0,
|
| 63 |
+
"tie_word_embeddings": false,
|
| 64 |
+
"torch_dtype": "bfloat16",
|
| 65 |
+
"transformers_version": "4.55.2",
|
| 66 |
+
"use_cache": false,
|
| 67 |
+
"vocab_size": 201088
|
| 68 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 199998,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
200002,
|
| 6 |
+
199999,
|
| 7 |
+
200012
|
| 8 |
+
],
|
| 9 |
+
"pad_token_id": 199999,
|
| 10 |
+
"transformers_version": "4.55.2"
|
| 11 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1171
|
model-00001-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5c10dfc3183d02175f0f63f4e2055ebbfbdf5557394d4593d66a9fac70f388cd
|
| 3 |
+
size 4504304664
|
model-00002-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a1fe0574887b1be50b620eb2e04af8411b7fc36efa0d229ce7e6ced4507449a1
|
| 3 |
+
size 4939127656
|
model-00003-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0e9d14f3ae382ac47a32e5b82272933a65117593415d478a8d85b28623408fa
|
| 3 |
+
size 4939127656
|
model-00004-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:18b905e1df2a74186ca5b81732cc0b73f69b62c806fa577be51b528a028af8c8
|
| 3 |
+
size 4939127680
|
model-00005-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4c684100745fb1a1e423af2c167156dff1915e92fe751bbc0924aa8b5dc57a8
|
| 3 |
+
size 4939127704
|
model-00006-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6febe1cb6bcd502dbcf4f5163f6a2dd8a95dba574542c2d5686d5b07622383e1
|
| 3 |
+
size 4939127704
|
model-00007-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:67df7bf4ee2e62bc2637dfb2e44b03ac282aec4b0abd9d1a0f8f081e98afd5c0
|
| 3 |
+
size 4939127704
|
model-00008-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b3372c7974d6b34a4997364a29528e9e7455f06d6a77c3bdc52a4a2bd03a0840
|
| 3 |
+
size 4939127704
|
model-00009-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c54415710b2d9f3ac498c5e92c9bbba81fd20ad2435c6e26715c7d5cb6c63adc
|
| 3 |
+
size 2751362856
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 335424,
|
| 4 |
+
"total_size": 41829514368
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"lm_head.weight": "model-00009-of-00009.safetensors",
|
| 8 |
+
"model.embed_tokens.weight": "model-00001-of-00009.safetensors",
|
| 9 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 10 |
+
"model.layers.0.mlp.experts.down_proj": "model-00001-of-00009.safetensors",
|
| 11 |
+
"model.layers.0.mlp.experts.down_proj_bias": "model-00001-of-00009.safetensors",
|
| 12 |
+
"model.layers.0.mlp.experts.gate_up_proj": "model-00001-of-00009.safetensors",
|
| 13 |
+
"model.layers.0.mlp.experts.gate_up_proj_bias": "model-00001-of-00009.safetensors",
|
| 14 |
+
"model.layers.0.mlp.router.bias": "model-00001-of-00009.safetensors",
|
| 15 |
+
"model.layers.0.mlp.router.weight": "model-00001-of-00009.safetensors",
|
| 16 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00009.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.o_proj.bias": "model-00001-of-00009.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
|
| 21 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00009.safetensors",
|
| 22 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
|
| 23 |
+
"model.layers.0.self_attn.sinks": "model-00001-of-00009.safetensors",
|
| 24 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00009.safetensors",
|
| 25 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
|
| 26 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 27 |
+
"model.layers.1.mlp.experts.down_proj": "model-00001-of-00009.safetensors",
|
| 28 |
+
"model.layers.1.mlp.experts.down_proj_bias": "model-00001-of-00009.safetensors",
|
| 29 |
+
"model.layers.1.mlp.experts.gate_up_proj": "model-00001-of-00009.safetensors",
|
| 30 |
+
"model.layers.1.mlp.experts.gate_up_proj_bias": "model-00001-of-00009.safetensors",
|
| 31 |
+
"model.layers.1.mlp.router.bias": "model-00001-of-00009.safetensors",
|
| 32 |
+
"model.layers.1.mlp.router.weight": "model-00001-of-00009.safetensors",
|
| 33 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 34 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00009.safetensors",
|
| 35 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
|
| 36 |
+
"model.layers.1.self_attn.o_proj.bias": "model-00001-of-00009.safetensors",
|
| 37 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
|
| 38 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00009.safetensors",
|
| 39 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
|
| 40 |
+
"model.layers.1.self_attn.sinks": "model-00001-of-00009.safetensors",
|
| 41 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00009.safetensors",
|
| 42 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
|
| 43 |
+
"model.layers.10.input_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 44 |
+
"model.layers.10.mlp.experts.down_proj": "model-00004-of-00009.safetensors",
|
| 45 |
+
"model.layers.10.mlp.experts.down_proj_bias": "model-00004-of-00009.safetensors",
|
| 46 |
+
"model.layers.10.mlp.experts.gate_up_proj": "model-00004-of-00009.safetensors",
|
| 47 |
+
"model.layers.10.mlp.experts.gate_up_proj_bias": "model-00004-of-00009.safetensors",
|
| 48 |
+
"model.layers.10.mlp.router.bias": "model-00004-of-00009.safetensors",
|
| 49 |
+
"model.layers.10.mlp.router.weight": "model-00004-of-00009.safetensors",
|
| 50 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 51 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00004-of-00009.safetensors",
|
| 52 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
|
| 53 |
+
"model.layers.10.self_attn.o_proj.bias": "model-00004-of-00009.safetensors",
|
| 54 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
|
| 55 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00004-of-00009.safetensors",
|
| 56 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
|
| 57 |
+
"model.layers.10.self_attn.sinks": "model-00004-of-00009.safetensors",
|
| 58 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00004-of-00009.safetensors",
|
| 59 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
|
| 60 |
+
"model.layers.11.input_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 61 |
+
"model.layers.11.mlp.experts.down_proj": "model-00005-of-00009.safetensors",
|
| 62 |
+
"model.layers.11.mlp.experts.down_proj_bias": "model-00005-of-00009.safetensors",
|
| 63 |
+
"model.layers.11.mlp.experts.gate_up_proj": "model-00005-of-00009.safetensors",
|
| 64 |
+
"model.layers.11.mlp.experts.gate_up_proj_bias": "model-00005-of-00009.safetensors",
|
| 65 |
+
"model.layers.11.mlp.router.bias": "model-00004-of-00009.safetensors",
|
| 66 |
+
"model.layers.11.mlp.router.weight": "model-00004-of-00009.safetensors",
|
| 67 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 68 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00004-of-00009.safetensors",
|
| 69 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
|
| 70 |
+
"model.layers.11.self_attn.o_proj.bias": "model-00004-of-00009.safetensors",
|
| 71 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
|
| 72 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00004-of-00009.safetensors",
|
| 73 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
|
| 74 |
+
"model.layers.11.self_attn.sinks": "model-00004-of-00009.safetensors",
|
| 75 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00004-of-00009.safetensors",
|
| 76 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
|
| 77 |
+
"model.layers.12.input_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 78 |
+
"model.layers.12.mlp.experts.down_proj": "model-00005-of-00009.safetensors",
|
| 79 |
+
"model.layers.12.mlp.experts.down_proj_bias": "model-00005-of-00009.safetensors",
|
| 80 |
+
"model.layers.12.mlp.experts.gate_up_proj": "model-00005-of-00009.safetensors",
|
| 81 |
+
"model.layers.12.mlp.experts.gate_up_proj_bias": "model-00005-of-00009.safetensors",
|
| 82 |
+
"model.layers.12.mlp.router.bias": "model-00005-of-00009.safetensors",
|
| 83 |
+
"model.layers.12.mlp.router.weight": "model-00005-of-00009.safetensors",
|
| 84 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 85 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00005-of-00009.safetensors",
|
| 86 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
|
| 87 |
+
"model.layers.12.self_attn.o_proj.bias": "model-00005-of-00009.safetensors",
|
| 88 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
|
| 89 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00005-of-00009.safetensors",
|
| 90 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
|
| 91 |
+
"model.layers.12.self_attn.sinks": "model-00005-of-00009.safetensors",
|
| 92 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00005-of-00009.safetensors",
|
| 93 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
|
| 94 |
+
"model.layers.13.input_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 95 |
+
"model.layers.13.mlp.experts.down_proj": "model-00005-of-00009.safetensors",
|
| 96 |
+
"model.layers.13.mlp.experts.down_proj_bias": "model-00005-of-00009.safetensors",
|
| 97 |
+
"model.layers.13.mlp.experts.gate_up_proj": "model-00005-of-00009.safetensors",
|
| 98 |
+
"model.layers.13.mlp.experts.gate_up_proj_bias": "model-00005-of-00009.safetensors",
|
| 99 |
+
"model.layers.13.mlp.router.bias": "model-00005-of-00009.safetensors",
|
| 100 |
+
"model.layers.13.mlp.router.weight": "model-00005-of-00009.safetensors",
|
| 101 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 102 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00005-of-00009.safetensors",
|
| 103 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
|
| 104 |
+
"model.layers.13.self_attn.o_proj.bias": "model-00005-of-00009.safetensors",
|
| 105 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
|
| 106 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00005-of-00009.safetensors",
|
| 107 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
|
| 108 |
+
"model.layers.13.self_attn.sinks": "model-00005-of-00009.safetensors",
|
| 109 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00005-of-00009.safetensors",
|
| 110 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
|
| 111 |
+
"model.layers.14.input_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 112 |
+
"model.layers.14.mlp.experts.down_proj": "model-00006-of-00009.safetensors",
|
| 113 |
+
"model.layers.14.mlp.experts.down_proj_bias": "model-00006-of-00009.safetensors",
|
| 114 |
+
"model.layers.14.mlp.experts.gate_up_proj": "model-00006-of-00009.safetensors",
|
| 115 |
+
"model.layers.14.mlp.experts.gate_up_proj_bias": "model-00006-of-00009.safetensors",
|
| 116 |
+
"model.layers.14.mlp.router.bias": "model-00005-of-00009.safetensors",
|
| 117 |
+
"model.layers.14.mlp.router.weight": "model-00005-of-00009.safetensors",
|
| 118 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 119 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00005-of-00009.safetensors",
|
| 120 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
|
| 121 |
+
"model.layers.14.self_attn.o_proj.bias": "model-00005-of-00009.safetensors",
|
| 122 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
|
| 123 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00005-of-00009.safetensors",
|
| 124 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
|
| 125 |
+
"model.layers.14.self_attn.sinks": "model-00005-of-00009.safetensors",
|
| 126 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00005-of-00009.safetensors",
|
| 127 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
|
| 128 |
+
"model.layers.15.input_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 129 |
+
"model.layers.15.mlp.experts.down_proj": "model-00006-of-00009.safetensors",
|
| 130 |
+
"model.layers.15.mlp.experts.down_proj_bias": "model-00006-of-00009.safetensors",
|
| 131 |
+
"model.layers.15.mlp.experts.gate_up_proj": "model-00006-of-00009.safetensors",
|
| 132 |
+
"model.layers.15.mlp.experts.gate_up_proj_bias": "model-00006-of-00009.safetensors",
|
| 133 |
+
"model.layers.15.mlp.router.bias": "model-00006-of-00009.safetensors",
|
| 134 |
+
"model.layers.15.mlp.router.weight": "model-00006-of-00009.safetensors",
|
| 135 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 136 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00006-of-00009.safetensors",
|
| 137 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
|
| 138 |
+
"model.layers.15.self_attn.o_proj.bias": "model-00006-of-00009.safetensors",
|
| 139 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
|
| 140 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00006-of-00009.safetensors",
|
| 141 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
|
| 142 |
+
"model.layers.15.self_attn.sinks": "model-00006-of-00009.safetensors",
|
| 143 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00006-of-00009.safetensors",
|
| 144 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
|
| 145 |
+
"model.layers.16.input_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 146 |
+
"model.layers.16.mlp.experts.down_proj": "model-00006-of-00009.safetensors",
|
| 147 |
+
"model.layers.16.mlp.experts.down_proj_bias": "model-00006-of-00009.safetensors",
|
| 148 |
+
"model.layers.16.mlp.experts.gate_up_proj": "model-00006-of-00009.safetensors",
|
| 149 |
+
"model.layers.16.mlp.experts.gate_up_proj_bias": "model-00006-of-00009.safetensors",
|
| 150 |
+
"model.layers.16.mlp.router.bias": "model-00006-of-00009.safetensors",
|
| 151 |
+
"model.layers.16.mlp.router.weight": "model-00006-of-00009.safetensors",
|
| 152 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 153 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00006-of-00009.safetensors",
|
| 154 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
|
| 155 |
+
"model.layers.16.self_attn.o_proj.bias": "model-00006-of-00009.safetensors",
|
| 156 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
|
| 157 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00006-of-00009.safetensors",
|
| 158 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
|
| 159 |
+
"model.layers.16.self_attn.sinks": "model-00006-of-00009.safetensors",
|
| 160 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00006-of-00009.safetensors",
|
| 161 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
|
| 162 |
+
"model.layers.17.input_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 163 |
+
"model.layers.17.mlp.experts.down_proj": "model-00007-of-00009.safetensors",
|
| 164 |
+
"model.layers.17.mlp.experts.down_proj_bias": "model-00007-of-00009.safetensors",
|
| 165 |
+
"model.layers.17.mlp.experts.gate_up_proj": "model-00007-of-00009.safetensors",
|
| 166 |
+
"model.layers.17.mlp.experts.gate_up_proj_bias": "model-00007-of-00009.safetensors",
|
| 167 |
+
"model.layers.17.mlp.router.bias": "model-00006-of-00009.safetensors",
|
| 168 |
+
"model.layers.17.mlp.router.weight": "model-00006-of-00009.safetensors",
|
| 169 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 170 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00006-of-00009.safetensors",
|
| 171 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
|
| 172 |
+
"model.layers.17.self_attn.o_proj.bias": "model-00006-of-00009.safetensors",
|
| 173 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
|
| 174 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00006-of-00009.safetensors",
|
| 175 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
|
| 176 |
+
"model.layers.17.self_attn.sinks": "model-00006-of-00009.safetensors",
|
| 177 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00006-of-00009.safetensors",
|
| 178 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
|
| 179 |
+
"model.layers.18.input_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 180 |
+
"model.layers.18.mlp.experts.down_proj": "model-00007-of-00009.safetensors",
|
| 181 |
+
"model.layers.18.mlp.experts.down_proj_bias": "model-00007-of-00009.safetensors",
|
| 182 |
+
"model.layers.18.mlp.experts.gate_up_proj": "model-00007-of-00009.safetensors",
|
| 183 |
+
"model.layers.18.mlp.experts.gate_up_proj_bias": "model-00007-of-00009.safetensors",
|
| 184 |
+
"model.layers.18.mlp.router.bias": "model-00007-of-00009.safetensors",
|
| 185 |
+
"model.layers.18.mlp.router.weight": "model-00007-of-00009.safetensors",
|
| 186 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 187 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00007-of-00009.safetensors",
|
| 188 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
|
| 189 |
+
"model.layers.18.self_attn.o_proj.bias": "model-00007-of-00009.safetensors",
|
| 190 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
|
| 191 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00007-of-00009.safetensors",
|
| 192 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
|
| 193 |
+
"model.layers.18.self_attn.sinks": "model-00007-of-00009.safetensors",
|
| 194 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00007-of-00009.safetensors",
|
| 195 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
|
| 196 |
+
"model.layers.19.input_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 197 |
+
"model.layers.19.mlp.experts.down_proj": "model-00007-of-00009.safetensors",
|
| 198 |
+
"model.layers.19.mlp.experts.down_proj_bias": "model-00007-of-00009.safetensors",
|
| 199 |
+
"model.layers.19.mlp.experts.gate_up_proj": "model-00007-of-00009.safetensors",
|
| 200 |
+
"model.layers.19.mlp.experts.gate_up_proj_bias": "model-00007-of-00009.safetensors",
|
| 201 |
+
"model.layers.19.mlp.router.bias": "model-00007-of-00009.safetensors",
|
| 202 |
+
"model.layers.19.mlp.router.weight": "model-00007-of-00009.safetensors",
|
| 203 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 204 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00007-of-00009.safetensors",
|
| 205 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
|
| 206 |
+
"model.layers.19.self_attn.o_proj.bias": "model-00007-of-00009.safetensors",
|
| 207 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
|
| 208 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00007-of-00009.safetensors",
|
| 209 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
|
| 210 |
+
"model.layers.19.self_attn.sinks": "model-00007-of-00009.safetensors",
|
| 211 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00007-of-00009.safetensors",
|
| 212 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
|
| 213 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 214 |
+
"model.layers.2.mlp.experts.down_proj": "model-00002-of-00009.safetensors",
|
| 215 |
+
"model.layers.2.mlp.experts.down_proj_bias": "model-00002-of-00009.safetensors",
|
| 216 |
+
"model.layers.2.mlp.experts.gate_up_proj": "model-00002-of-00009.safetensors",
|
| 217 |
+
"model.layers.2.mlp.experts.gate_up_proj_bias": "model-00002-of-00009.safetensors",
|
| 218 |
+
"model.layers.2.mlp.router.bias": "model-00001-of-00009.safetensors",
|
| 219 |
+
"model.layers.2.mlp.router.weight": "model-00001-of-00009.safetensors",
|
| 220 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 221 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00009.safetensors",
|
| 222 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
|
| 223 |
+
"model.layers.2.self_attn.o_proj.bias": "model-00001-of-00009.safetensors",
|
| 224 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
|
| 225 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00009.safetensors",
|
| 226 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
|
| 227 |
+
"model.layers.2.self_attn.sinks": "model-00001-of-00009.safetensors",
|
| 228 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00009.safetensors",
|
| 229 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
|
| 230 |
+
"model.layers.20.input_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 231 |
+
"model.layers.20.mlp.experts.down_proj": "model-00008-of-00009.safetensors",
|
| 232 |
+
"model.layers.20.mlp.experts.down_proj_bias": "model-00008-of-00009.safetensors",
|
| 233 |
+
"model.layers.20.mlp.experts.gate_up_proj": "model-00008-of-00009.safetensors",
|
| 234 |
+
"model.layers.20.mlp.experts.gate_up_proj_bias": "model-00008-of-00009.safetensors",
|
| 235 |
+
"model.layers.20.mlp.router.bias": "model-00007-of-00009.safetensors",
|
| 236 |
+
"model.layers.20.mlp.router.weight": "model-00007-of-00009.safetensors",
|
| 237 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 238 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00007-of-00009.safetensors",
|
| 239 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
|
| 240 |
+
"model.layers.20.self_attn.o_proj.bias": "model-00007-of-00009.safetensors",
|
| 241 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
|
| 242 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00007-of-00009.safetensors",
|
| 243 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
|
| 244 |
+
"model.layers.20.self_attn.sinks": "model-00007-of-00009.safetensors",
|
| 245 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00007-of-00009.safetensors",
|
| 246 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
|
| 247 |
+
"model.layers.21.input_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 248 |
+
"model.layers.21.mlp.experts.down_proj": "model-00008-of-00009.safetensors",
|
| 249 |
+
"model.layers.21.mlp.experts.down_proj_bias": "model-00008-of-00009.safetensors",
|
| 250 |
+
"model.layers.21.mlp.experts.gate_up_proj": "model-00008-of-00009.safetensors",
|
| 251 |
+
"model.layers.21.mlp.experts.gate_up_proj_bias": "model-00008-of-00009.safetensors",
|
| 252 |
+
"model.layers.21.mlp.router.bias": "model-00008-of-00009.safetensors",
|
| 253 |
+
"model.layers.21.mlp.router.weight": "model-00008-of-00009.safetensors",
|
| 254 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 255 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00008-of-00009.safetensors",
|
| 256 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
|
| 257 |
+
"model.layers.21.self_attn.o_proj.bias": "model-00008-of-00009.safetensors",
|
| 258 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
|
| 259 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00008-of-00009.safetensors",
|
| 260 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
|
| 261 |
+
"model.layers.21.self_attn.sinks": "model-00008-of-00009.safetensors",
|
| 262 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00008-of-00009.safetensors",
|
| 263 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
|
| 264 |
+
"model.layers.22.input_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 265 |
+
"model.layers.22.mlp.experts.down_proj": "model-00008-of-00009.safetensors",
|
| 266 |
+
"model.layers.22.mlp.experts.down_proj_bias": "model-00008-of-00009.safetensors",
|
| 267 |
+
"model.layers.22.mlp.experts.gate_up_proj": "model-00008-of-00009.safetensors",
|
| 268 |
+
"model.layers.22.mlp.experts.gate_up_proj_bias": "model-00008-of-00009.safetensors",
|
| 269 |
+
"model.layers.22.mlp.router.bias": "model-00008-of-00009.safetensors",
|
| 270 |
+
"model.layers.22.mlp.router.weight": "model-00008-of-00009.safetensors",
|
| 271 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 272 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00008-of-00009.safetensors",
|
| 273 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
|
| 274 |
+
"model.layers.22.self_attn.o_proj.bias": "model-00008-of-00009.safetensors",
|
| 275 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
|
| 276 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00008-of-00009.safetensors",
|
| 277 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
|
| 278 |
+
"model.layers.22.self_attn.sinks": "model-00008-of-00009.safetensors",
|
| 279 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00008-of-00009.safetensors",
|
| 280 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
|
| 281 |
+
"model.layers.23.input_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 282 |
+
"model.layers.23.mlp.experts.down_proj": "model-00009-of-00009.safetensors",
|
| 283 |
+
"model.layers.23.mlp.experts.down_proj_bias": "model-00009-of-00009.safetensors",
|
| 284 |
+
"model.layers.23.mlp.experts.gate_up_proj": "model-00009-of-00009.safetensors",
|
| 285 |
+
"model.layers.23.mlp.experts.gate_up_proj_bias": "model-00009-of-00009.safetensors",
|
| 286 |
+
"model.layers.23.mlp.router.bias": "model-00008-of-00009.safetensors",
|
| 287 |
+
"model.layers.23.mlp.router.weight": "model-00008-of-00009.safetensors",
|
| 288 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 289 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00008-of-00009.safetensors",
|
| 290 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
|
| 291 |
+
"model.layers.23.self_attn.o_proj.bias": "model-00008-of-00009.safetensors",
|
| 292 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
|
| 293 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00008-of-00009.safetensors",
|
| 294 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
|
| 295 |
+
"model.layers.23.self_attn.sinks": "model-00008-of-00009.safetensors",
|
| 296 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00008-of-00009.safetensors",
|
| 297 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
|
| 298 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 299 |
+
"model.layers.3.mlp.experts.down_proj": "model-00002-of-00009.safetensors",
|
| 300 |
+
"model.layers.3.mlp.experts.down_proj_bias": "model-00002-of-00009.safetensors",
|
| 301 |
+
"model.layers.3.mlp.experts.gate_up_proj": "model-00002-of-00009.safetensors",
|
| 302 |
+
"model.layers.3.mlp.experts.gate_up_proj_bias": "model-00002-of-00009.safetensors",
|
| 303 |
+
"model.layers.3.mlp.router.bias": "model-00002-of-00009.safetensors",
|
| 304 |
+
"model.layers.3.mlp.router.weight": "model-00002-of-00009.safetensors",
|
| 305 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 306 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00002-of-00009.safetensors",
|
| 307 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
|
| 308 |
+
"model.layers.3.self_attn.o_proj.bias": "model-00002-of-00009.safetensors",
|
| 309 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
|
| 310 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00002-of-00009.safetensors",
|
| 311 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
|
| 312 |
+
"model.layers.3.self_attn.sinks": "model-00002-of-00009.safetensors",
|
| 313 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00002-of-00009.safetensors",
|
| 314 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
|
| 315 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 316 |
+
"model.layers.4.mlp.experts.down_proj": "model-00002-of-00009.safetensors",
|
| 317 |
+
"model.layers.4.mlp.experts.down_proj_bias": "model-00002-of-00009.safetensors",
|
| 318 |
+
"model.layers.4.mlp.experts.gate_up_proj": "model-00002-of-00009.safetensors",
|
| 319 |
+
"model.layers.4.mlp.experts.gate_up_proj_bias": "model-00002-of-00009.safetensors",
|
| 320 |
+
"model.layers.4.mlp.router.bias": "model-00002-of-00009.safetensors",
|
| 321 |
+
"model.layers.4.mlp.router.weight": "model-00002-of-00009.safetensors",
|
| 322 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 323 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00009.safetensors",
|
| 324 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
|
| 325 |
+
"model.layers.4.self_attn.o_proj.bias": "model-00002-of-00009.safetensors",
|
| 326 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
|
| 327 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00009.safetensors",
|
| 328 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
|
| 329 |
+
"model.layers.4.self_attn.sinks": "model-00002-of-00009.safetensors",
|
| 330 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00009.safetensors",
|
| 331 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
|
| 332 |
+
"model.layers.5.input_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 333 |
+
"model.layers.5.mlp.experts.down_proj": "model-00003-of-00009.safetensors",
|
| 334 |
+
"model.layers.5.mlp.experts.down_proj_bias": "model-00003-of-00009.safetensors",
|
| 335 |
+
"model.layers.5.mlp.experts.gate_up_proj": "model-00003-of-00009.safetensors",
|
| 336 |
+
"model.layers.5.mlp.experts.gate_up_proj_bias": "model-00003-of-00009.safetensors",
|
| 337 |
+
"model.layers.5.mlp.router.bias": "model-00002-of-00009.safetensors",
|
| 338 |
+
"model.layers.5.mlp.router.weight": "model-00002-of-00009.safetensors",
|
| 339 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 340 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00009.safetensors",
|
| 341 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
|
| 342 |
+
"model.layers.5.self_attn.o_proj.bias": "model-00002-of-00009.safetensors",
|
| 343 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
|
| 344 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00009.safetensors",
|
| 345 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
|
| 346 |
+
"model.layers.5.self_attn.sinks": "model-00002-of-00009.safetensors",
|
| 347 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00009.safetensors",
|
| 348 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
|
| 349 |
+
"model.layers.6.input_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 350 |
+
"model.layers.6.mlp.experts.down_proj": "model-00003-of-00009.safetensors",
|
| 351 |
+
"model.layers.6.mlp.experts.down_proj_bias": "model-00003-of-00009.safetensors",
|
| 352 |
+
"model.layers.6.mlp.experts.gate_up_proj": "model-00003-of-00009.safetensors",
|
| 353 |
+
"model.layers.6.mlp.experts.gate_up_proj_bias": "model-00003-of-00009.safetensors",
|
| 354 |
+
"model.layers.6.mlp.router.bias": "model-00003-of-00009.safetensors",
|
| 355 |
+
"model.layers.6.mlp.router.weight": "model-00003-of-00009.safetensors",
|
| 356 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 357 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00003-of-00009.safetensors",
|
| 358 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
|
| 359 |
+
"model.layers.6.self_attn.o_proj.bias": "model-00003-of-00009.safetensors",
|
| 360 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
|
| 361 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00003-of-00009.safetensors",
|
| 362 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
|
| 363 |
+
"model.layers.6.self_attn.sinks": "model-00003-of-00009.safetensors",
|
| 364 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00003-of-00009.safetensors",
|
| 365 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
|
| 366 |
+
"model.layers.7.input_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 367 |
+
"model.layers.7.mlp.experts.down_proj": "model-00003-of-00009.safetensors",
|
| 368 |
+
"model.layers.7.mlp.experts.down_proj_bias": "model-00003-of-00009.safetensors",
|
| 369 |
+
"model.layers.7.mlp.experts.gate_up_proj": "model-00003-of-00009.safetensors",
|
| 370 |
+
"model.layers.7.mlp.experts.gate_up_proj_bias": "model-00003-of-00009.safetensors",
|
| 371 |
+
"model.layers.7.mlp.router.bias": "model-00003-of-00009.safetensors",
|
| 372 |
+
"model.layers.7.mlp.router.weight": "model-00003-of-00009.safetensors",
|
| 373 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 374 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00003-of-00009.safetensors",
|
| 375 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
|
| 376 |
+
"model.layers.7.self_attn.o_proj.bias": "model-00003-of-00009.safetensors",
|
| 377 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
|
| 378 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00003-of-00009.safetensors",
|
| 379 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
|
| 380 |
+
"model.layers.7.self_attn.sinks": "model-00003-of-00009.safetensors",
|
| 381 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00003-of-00009.safetensors",
|
| 382 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
|
| 383 |
+
"model.layers.8.input_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 384 |
+
"model.layers.8.mlp.experts.down_proj": "model-00004-of-00009.safetensors",
|
| 385 |
+
"model.layers.8.mlp.experts.down_proj_bias": "model-00004-of-00009.safetensors",
|
| 386 |
+
"model.layers.8.mlp.experts.gate_up_proj": "model-00004-of-00009.safetensors",
|
| 387 |
+
"model.layers.8.mlp.experts.gate_up_proj_bias": "model-00004-of-00009.safetensors",
|
| 388 |
+
"model.layers.8.mlp.router.bias": "model-00003-of-00009.safetensors",
|
| 389 |
+
"model.layers.8.mlp.router.weight": "model-00003-of-00009.safetensors",
|
| 390 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 391 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00003-of-00009.safetensors",
|
| 392 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
|
| 393 |
+
"model.layers.8.self_attn.o_proj.bias": "model-00003-of-00009.safetensors",
|
| 394 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
|
| 395 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00003-of-00009.safetensors",
|
| 396 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
|
| 397 |
+
"model.layers.8.self_attn.sinks": "model-00003-of-00009.safetensors",
|
| 398 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00003-of-00009.safetensors",
|
| 399 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
|
| 400 |
+
"model.layers.9.input_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 401 |
+
"model.layers.9.mlp.experts.down_proj": "model-00004-of-00009.safetensors",
|
| 402 |
+
"model.layers.9.mlp.experts.down_proj_bias": "model-00004-of-00009.safetensors",
|
| 403 |
+
"model.layers.9.mlp.experts.gate_up_proj": "model-00004-of-00009.safetensors",
|
| 404 |
+
"model.layers.9.mlp.experts.gate_up_proj_bias": "model-00004-of-00009.safetensors",
|
| 405 |
+
"model.layers.9.mlp.router.bias": "model-00004-of-00009.safetensors",
|
| 406 |
+
"model.layers.9.mlp.router.weight": "model-00004-of-00009.safetensors",
|
| 407 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 408 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00004-of-00009.safetensors",
|
| 409 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
|
| 410 |
+
"model.layers.9.self_attn.o_proj.bias": "model-00004-of-00009.safetensors",
|
| 411 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
|
| 412 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00004-of-00009.safetensors",
|
| 413 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
|
| 414 |
+
"model.layers.9.self_attn.sinks": "model-00004-of-00009.safetensors",
|
| 415 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00004-of-00009.safetensors",
|
| 416 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
|
| 417 |
+
"model.norm.weight": "model-00009-of-00009.safetensors"
|
| 418 |
+
}
|
| 419 |
+
}
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9eee49a2ad561e75c5f0f3e8056308fc27088e19e19620813602767a759d8e5a
|
| 3 |
+
size 15429
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e34c5da13614815d740bb91790974fffad60cd4e1e61540d824668f639ceb8c4
|
| 3 |
+
size 15429
|
rng_state_10.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f54055be0fb6b9e3666ba345e4d9df4875755e667eeabb71cadb0ee70194c157
|
| 3 |
+
size 15440
|
rng_state_11.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ae3de24aec6bfc204578ca4753c7c75b16af5cdcab3b3a46d12b0bab5e2333c
|
| 3 |
+
size 15440
|
rng_state_12.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:56fdfad6c17cc47f357a2083b9bb0d96ceb2f40ab592e7dad49b45e9f7ea56c8
|
| 3 |
+
size 15440
|
rng_state_13.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:377d3ca5e0fed70d2871b0e02ab0d68c95a27921e54f6f470e07e97b7b34c0ec
|
| 3 |
+
size 15440
|
rng_state_14.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3ca3877fd4f32949e62e35a77fd8a8086e46556a53c6945a80605396cb691c10
|
| 3 |
+
size 15440
|
rng_state_15.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:af4d9ccd3b336cda43fd71645003563d4ad8e1d0a54b6d393dc4d314c9fd8661
|
| 3 |
+
size 15440
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84cf36eb77e76f4d60fcc92f3755828769fe8aab6a2ca29f9573827e93d0c9f5
|
| 3 |
+
size 15429
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e5001f16e2075ef4f6a1c0dbc75d9121e1906a36d5ad35279fed02e36a6c7d13
|
| 3 |
+
size 15429
|
rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bfb0400eb100754ec3e07f9a35cd797703148de2acaf7c5874c31cc143ae9bbf
|
| 3 |
+
size 15429
|
rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cff23591381638de3959ea349ab4c0356b2ddc4dbf323f2d2e0c9c489cf222e1
|
| 3 |
+
size 15429
|
rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c3fea0e3da186b1be8cb2a9533910d65b15bf35003db173e6eb826f652510592
|
| 3 |
+
size 15429
|
rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dae4b96aee17eba9a435b40d13a51f703fc32075e0c24eab2725a10c9c820c3c
|
| 3 |
+
size 15429
|
rng_state_8.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:67f94c73d4837fa0a841b1ded60d8feabd72be6da79ef722b2d91ab902518b1c
|
| 3 |
+
size 15429
|
rng_state_9.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:930b391dcb4f58bdeb1fc82e91731987b14de9288ab9630b2c11b155a2df0181
|
| 3 |
+
size 15429
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13493657eaaaf1c45b510eb316a536b61c0eea05e04002b633074de670687050
|
| 3 |
+
size 1465
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|startoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|return|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<|endoftext|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0614fe83cadab421296e664e1f48f4261fa8fef6e03e63bb75c20f38e37d07d3
|
| 3 |
+
size 27868174
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"199998": {
|
| 4 |
+
"content": "<|startoftext|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"199999": {
|
| 12 |
+
"content": "<|endoftext|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"200000": {
|
| 20 |
+
"content": "<|reserved_200000|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"200001": {
|
| 28 |
+
"content": "<|reserved_200001|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"200002": {
|
| 36 |
+
"content": "<|return|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"200003": {
|
| 44 |
+
"content": "<|constrain|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"200004": {
|
| 52 |
+
"content": "<|reserved_200004|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"200005": {
|
| 60 |
+
"content": "<|channel|>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"200006": {
|
| 68 |
+
"content": "<|start|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"200007": {
|
| 76 |
+
"content": "<|end|>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"200008": {
|
| 84 |
+
"content": "<|message|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"200009": {
|
| 92 |
+
"content": "<|reserved_200009|>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"200010": {
|
| 100 |
+
"content": "<|reserved_200010|>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"200011": {
|
| 108 |
+
"content": "<|reserved_200011|>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"200012": {
|
| 116 |
+
"content": "<|call|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"200013": {
|
| 124 |
+
"content": "<|reserved_200013|>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"200014": {
|
| 132 |
+
"content": "<|reserved_200014|>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"200015": {
|
| 140 |
+
"content": "<|reserved_200015|>",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"200016": {
|
| 148 |
+
"content": "<|reserved_200016|>",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"200017": {
|
| 156 |
+
"content": "<|reserved_200017|>",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"200018": {
|
| 164 |
+
"content": "<|endofprompt|>",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
}
|
| 171 |
+
},
|
| 172 |
+
"bos_token": "<|startoftext|>",
|
| 173 |
+
"clean_up_tokenization_spaces": false,
|
| 174 |
+
"eos_token": "<|return|>",
|
| 175 |
+
"extra_special_tokens": {},
|
| 176 |
+
"model_input_names": [
|
| 177 |
+
"input_ids",
|
| 178 |
+
"attention_mask"
|
| 179 |
+
],
|
| 180 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 181 |
+
"pad_token": "<|endoftext|>",
|
| 182 |
+
"padding_side": "right",
|
| 183 |
+
"split_special_tokens": false,
|
| 184 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 185 |
+
}
|
trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4287012de7bc0bdb6dcc500f6da7ce5b9902a265bea235b2511fc37da1131d9e
|
| 3 |
+
size 8337
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|