Update README.md
Browse files
README.md
CHANGED
|
@@ -50,13 +50,11 @@ You can load and run the model directly:
|
|
| 50 |
```
|
| 51 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 52 |
import torch
|
| 53 |
-
|
| 54 |
-
```
|
| 55 |
model_id = "salitahir/roberta-esg-relevance-green-guard-v1"
|
| 56 |
tok = AutoTokenizer.from_pretrained(model_id)
|
| 57 |
mod = AutoModelForSequenceClassification.from_pretrained(model_id).eval()
|
| 58 |
|
| 59 |
-
|
| 60 |
text = "We reduced Scope 2 emissions by 24% in 2024."
|
| 61 |
inputs = tok(text, return_tensors="pt", truncation=True)
|
| 62 |
pred = torch.softmax(mod(**inputs).logits, dim=-1)
|
|
|
|
| 50 |
```
|
| 51 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 52 |
import torch
|
| 53 |
+
|
|
|
|
| 54 |
model_id = "salitahir/roberta-esg-relevance-green-guard-v1"
|
| 55 |
tok = AutoTokenizer.from_pretrained(model_id)
|
| 56 |
mod = AutoModelForSequenceClassification.from_pretrained(model_id).eval()
|
| 57 |
|
|
|
|
| 58 |
text = "We reduced Scope 2 emissions by 24% in 2024."
|
| 59 |
inputs = tok(text, return_tensors="pt", truncation=True)
|
| 60 |
pred = torch.softmax(mod(**inputs).logits, dim=-1)
|