File size: 2,214 Bytes
6b0d8b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- pt
license: mit
base_model: RodrigoLimaRFL/distil-large-nurc-sp
tags:
- generated_from_trainer
datasets:
- sidleal/CORAA-MUPE-ASR-1
metrics:
- wer
model-index:
- name: CORAA-MUPE-ASR distil-whisper fine-tuned
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: CORAA-MUPE-ASR
      type: sidleal/CORAA-MUPE-ASR-1
      config: default
      split: validation
      args: 'split: test'
    metrics:
    - name: Wer
      type: wer
      value: 16.906779312781993
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CORAA-MUPE-ASR distil-whisper fine-tuned

This model is a fine-tuned version of [RodrigoLimaRFL/distil-large-nurc-sp](https://huggingface.co/RodrigoLimaRFL/distil-large-nurc-sp) on the CORAA-MUPE-ASR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3067
- Wer: 16.9068

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 18000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer     |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.3322        | 0.1734 | 3000  | 0.3687          | 19.8514 |
| 0.3245        | 0.3467 | 6000  | 0.3466          | 18.9951 |
| 0.3021        | 0.5201 | 9000  | 0.3320          | 18.0409 |
| 0.2852        | 0.6934 | 12000 | 0.3220          | 18.0697 |
| 0.2819        | 0.8668 | 15000 | 0.3095          | 17.4081 |
| 0.2062        | 1.0402 | 18000 | 0.3067          | 16.9068 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1