File size: 2,214 Bytes
6b0d8b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language:
- pt
license: mit
base_model: RodrigoLimaRFL/distil-large-nurc-sp
tags:
- generated_from_trainer
datasets:
- sidleal/CORAA-MUPE-ASR-1
metrics:
- wer
model-index:
- name: CORAA-MUPE-ASR distil-whisper fine-tuned
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CORAA-MUPE-ASR
type: sidleal/CORAA-MUPE-ASR-1
config: default
split: validation
args: 'split: test'
metrics:
- name: Wer
type: wer
value: 16.906779312781993
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CORAA-MUPE-ASR distil-whisper fine-tuned
This model is a fine-tuned version of [RodrigoLimaRFL/distil-large-nurc-sp](https://huggingface.co/RodrigoLimaRFL/distil-large-nurc-sp) on the CORAA-MUPE-ASR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3067
- Wer: 16.9068
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 18000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.3322 | 0.1734 | 3000 | 0.3687 | 19.8514 |
| 0.3245 | 0.3467 | 6000 | 0.3466 | 18.9951 |
| 0.3021 | 0.5201 | 9000 | 0.3320 | 18.0409 |
| 0.2852 | 0.6934 | 12000 | 0.3220 | 18.0697 |
| 0.2819 | 0.8668 | 15000 | 0.3095 | 17.4081 |
| 0.2062 | 1.0402 | 18000 | 0.3067 | 16.9068 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|