ACloudCenter commited on
Commit
0e9007a
·
1 Parent(s): 0a2959b

Modify with new transformer support

Browse files
Files changed (3) hide show
  1. app.py +11 -27
  2. requirements.txt +2 -10
  3. setup.py +0 -89
app.py CHANGED
@@ -6,13 +6,10 @@ import librosa
6
  import soundfile as sf
7
  import torch
8
  import traceback
9
- import threading
10
  from spaces import GPU
11
  from datetime import datetime
12
 
13
- from modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
14
- from processor.vibevoice_processor import VibeVoiceProcessor
15
- from modular.streamer import AudioStreamer
16
  from transformers.utils import logging
17
  from transformers import set_seed
18
 
@@ -47,17 +44,6 @@ class VibeVoiceDemo:
47
  def load_models(self):
48
  print("Loading processors and models on CPU...")
49
 
50
- # Debug: Show cache location
51
- import os
52
- cache_dir = os.path.expanduser("~/.cache/huggingface/hub")
53
- print(f"HuggingFace cache directory: {cache_dir}")
54
- if os.path.exists(cache_dir):
55
- print(f"Cache exists. Size: {sum(os.path.getsize(os.path.join(dirpath, filename)) for dirpath, _, filenames in os.walk(cache_dir) for filename in filenames) / (1024**3):.2f} GB")
56
- print("Cached models:")
57
- for item in os.listdir(cache_dir):
58
- if item.startswith("models--"):
59
- print(f" - {item}")
60
-
61
  for name, path in self.model_paths.items():
62
  print(f" - {name} from {path}")
63
  proc = VibeVoiceProcessor.from_pretrained(path)
@@ -173,15 +159,7 @@ class VibeVoiceDemo:
173
  log += f"Parameters: CFG Scale={cfg_scale}\n"
174
  log += f"Speakers: {', '.join(selected_speakers)}\n"
175
 
176
- voice_samples = []
177
- for speaker_name in selected_speakers:
178
- audio_path = self.available_voices[speaker_name]
179
- audio_data = self.read_audio(audio_path)
180
- if len(audio_data) == 0:
181
- raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
182
- voice_samples.append(audio_data)
183
-
184
- log += f"Loaded {len(voice_samples)} voice samples\n"
185
 
186
  lines = script.strip().split('\n')
187
  formatted_script_lines = []
@@ -199,13 +177,18 @@ class VibeVoiceDemo:
199
  log += f"Formatted script with {len(formatted_script_lines)} turns\n"
200
  log += "Processing with VibeVoice...\n"
201
 
 
 
 
202
  inputs = processor(
203
  text=[formatted_script],
204
- voice_samples=[voice_samples],
205
  padding=True,
206
  return_tensors="pt",
207
- return_attention_mask=True,
208
  )
 
 
 
209
 
210
  start_time = time.time()
211
  outputs = model.generate(
@@ -227,7 +210,8 @@ class VibeVoiceDemo:
227
  if audio.ndim > 1:
228
  audio = audio.squeeze()
229
 
230
- sample_rate = 24000
 
231
 
232
  output_dir = "outputs"
233
  os.makedirs(output_dir, exist_ok=True)
 
6
  import soundfile as sf
7
  import torch
8
  import traceback
 
9
  from spaces import GPU
10
  from datetime import datetime
11
 
12
+ from transformers import VibeVoiceForConditionalGenerationInference, VibeVoiceProcessor
 
 
13
  from transformers.utils import logging
14
  from transformers import set_seed
15
 
 
44
  def load_models(self):
45
  print("Loading processors and models on CPU...")
46
 
 
 
 
 
 
 
 
 
 
 
 
47
  for name, path in self.model_paths.items():
48
  print(f" - {name} from {path}")
49
  proc = VibeVoiceProcessor.from_pretrained(path)
 
159
  log += f"Parameters: CFG Scale={cfg_scale}\n"
160
  log += f"Speakers: {', '.join(selected_speakers)}\n"
161
 
162
+ log += f"Using voice samples from selected speakers\n"
 
 
 
 
 
 
 
 
163
 
164
  lines = script.strip().split('\n')
165
  formatted_script_lines = []
 
177
  log += f"Formatted script with {len(formatted_script_lines)} turns\n"
178
  log += "Processing with VibeVoice...\n"
179
 
180
+ # Processor now expects file paths, not audio arrays
181
+ voice_sample_paths = [self.available_voices[speaker] for speaker in selected_speakers]
182
+
183
  inputs = processor(
184
  text=[formatted_script],
185
+ voice_samples=[voice_sample_paths],
186
  padding=True,
187
  return_tensors="pt",
 
188
  )
189
+
190
+ # Move inputs to device
191
+ inputs = {key: val.to(self.device) if isinstance(val, torch.Tensor) else val for key, val in inputs.items()}
192
 
193
  start_time = time.time()
194
  outputs = model.generate(
 
210
  if audio.ndim > 1:
211
  audio = audio.squeeze()
212
 
213
+ # Get sample rate from processor
214
+ sample_rate = processor.audio_processor.sampling_rate if hasattr(processor, 'audio_processor') else 24000
215
 
216
  output_dir = "outputs"
217
  os.makedirs(output_dir, exist_ok=True)
requirements.txt CHANGED
@@ -1,19 +1,11 @@
1
  spaces
2
  torch
3
- accelerate==1.6.0
4
- transformers==4.51.3
5
- diffusers
6
  tqdm
7
  numpy
8
  scipy
9
- ml-collections
10
- absl-py
11
  gradio
12
- av
13
- aiortc
14
  soundfile
15
  librosa
16
- pydub
17
- requests
18
- python-dotenv
19
 
 
1
  spaces
2
  torch
3
+ accelerate
4
+ git+https://github.com/huggingface/transformers.git@refs/pull/40546/head
 
5
  tqdm
6
  numpy
7
  scipy
 
 
8
  gradio
 
 
9
  soundfile
10
  librosa
 
 
 
11
 
setup.py DELETED
@@ -1,89 +0,0 @@
1
- import os
2
- import subprocess
3
- import sys
4
- import shutil
5
- from pathlib import Path
6
-
7
- # setup.py will clone and install VibeVoice, copy voice files if they exist
8
-
9
- def setup_vibevoice():
10
- repo_dir = "VibeVoice"
11
- original_dir = os.getcwd()
12
-
13
- # clone repo if needed
14
- if not os.path.exists(repo_dir):
15
- print("Cloning the VibeVoice repository...")
16
- try:
17
- subprocess.run(
18
- ["git", "clone", "https://github.com/vibevoice-community/VibeVoice"],
19
- check=True,
20
- capture_output=True,
21
- text=True
22
- )
23
- print("Repository cloned successfully.")
24
- except subprocess.CalledProcessError as e:
25
- print(f"Error cloning repository: {e.stderr}")
26
- sys.exit(1)
27
- else:
28
- print("Repository already exists. Skipping clone.")
29
-
30
- # install the package
31
- os.chdir(repo_dir)
32
- print(f"Changed directory to: {os.getcwd()}")
33
-
34
- print("Installing the VibeVoice package...")
35
- try:
36
- subprocess.run(
37
- [sys.executable, "-m", "pip", "install", "-e", "."],
38
- check=True,
39
- capture_output=True,
40
- text=True
41
- )
42
- print("Package installed successfully.")
43
- except subprocess.CalledProcessError as e:
44
- print(f"Error installing package: {e.stderr}")
45
- sys.exit(1)
46
-
47
- # add to python path
48
- sys.path.insert(0, os.getcwd())
49
-
50
- # go back to original directory
51
- os.chdir(original_dir)
52
- print(f"Changed back to original directory: {os.getcwd()}")
53
-
54
- # copy voice files if they exist
55
- if os.path.exists("public/voices"):
56
- target_voices_dir = os.path.join(repo_dir, "demo", "voices")
57
-
58
- # clear existing voices and use only ours
59
- if os.path.exists(target_voices_dir):
60
- shutil.rmtree(target_voices_dir)
61
- os.makedirs(target_voices_dir)
62
-
63
- for file in os.listdir("public/voices"):
64
- if file.endswith(('.mp3', '.wav', '.flac', '.ogg', '.m4a', '.aac')):
65
- src = os.path.join("public/voices", file)
66
- dst = os.path.join(target_voices_dir, file)
67
- shutil.copy2(src, dst)
68
- print(f"Copied voice file: {file}")
69
-
70
- return repo_dir
71
-
72
- def setup_voice_presets():
73
- # get voice files from vibevoice demo directory
74
- voices_dir = Path("VibeVoice/demo/voices")
75
-
76
- voice_presets = {}
77
- audio_extensions = ('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac')
78
-
79
- if voices_dir.exists():
80
- for audio_file in voices_dir.glob("*"):
81
- if audio_file.suffix.lower() in audio_extensions:
82
- name = audio_file.stem
83
- voice_presets[name] = str(audio_file)
84
-
85
- # if no voices found, create directory
86
- if not voice_presets and not voices_dir.exists():
87
- voices_dir.mkdir(parents=True, exist_ok=True)
88
-
89
- return dict(sorted(voice_presets.items()))