Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import time | |
| import random | |
| import tempfile | |
| import torch | |
| import gradio as gr | |
| from PIL import Image | |
| import spaces | |
| from gradio import processing_utils, utils | |
| from diffusers import ( | |
| AutoencoderKL, | |
| ControlNetModel, | |
| StableDiffusionControlNetPipeline, | |
| StableDiffusionControlNetImg2ImgPipeline, | |
| StableDiffusionLatentUpscalePipeline, | |
| DPMSolverMultistepScheduler, | |
| EulerDiscreteScheduler, | |
| ) | |
| from share_btn import community_icon_html, loading_icon_html, share_js | |
| import user_history | |
| from illusion_style import css | |
| # ----------------------------- | |
| # Device & dtype (GPU/CPU auto) | |
| # ----------------------------- | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.float16 if device == "cuda" else torch.float32 | |
| # ----------------------------- | |
| # Base / ControlNet models | |
| # ----------------------------- | |
| BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE" | |
| VAE_ID = "stabilityai/sd-vae-ft-mse" | |
| CONTROLNET_ID = "monster-labs/control_v1p_sd15_qrcode_monster" | |
| # ----------------------------- | |
| # Load components | |
| # ----------------------------- | |
| vae = AutoencoderKL.from_pretrained(VAE_ID, torch_dtype=dtype) | |
| controlnet = ControlNetModel.from_pretrained(CONTROLNET_ID, torch_dtype=dtype) | |
| # โ ๏ธ safety checker & clip feature extractor removed | |
| main_pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| BASE_MODEL, | |
| controlnet=controlnet, | |
| vae=vae, | |
| safety_checker=None, # <= important | |
| feature_extractor=None, # <= important | |
| torch_dtype=dtype, | |
| ) | |
| main_pipe = main_pipe.to(device) | |
| # Img2Img pipe reusing components | |
| image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components) | |
| image_pipe = image_pipe.to(device) | |
| # ----------------------------- | |
| # Sampler map | |
| # ----------------------------- | |
| SAMPLER_MAP = { | |
| "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config( | |
| config, use_karras=True, algorithm_type="sde-dpmsolver++" | |
| ), | |
| "Euler": lambda config: EulerDiscreteScheduler.from_config(config), | |
| } | |
| # ----------------------------- | |
| # Helpers | |
| # ----------------------------- | |
| def center_crop_resize(img: Image.Image, output_size=(512, 512)): | |
| width, height = img.size | |
| new_dim = min(width, height) | |
| left = (width - new_dim) / 2 | |
| top = (height - new_dim) / 2 | |
| right = (width + new_dim) / 2 | |
| bottom = (height + new_dim) / 2 | |
| img = img.crop((left, top, right, bottom)) | |
| img = img.resize(output_size) | |
| return img | |
| def common_upscale(samples, width, height, upscale_method, crop=False): | |
| if crop == "center": | |
| old_w = samples.shape[3] | |
| old_h = samples.shape[2] | |
| old_aspect = old_w / old_h | |
| new_aspect = width / height | |
| x = 0 | |
| y = 0 | |
| if old_aspect > new_aspect: | |
| x = round((old_w - old_w * (new_aspect / old_aspect)) / 2) | |
| elif old_aspect < new_aspect: | |
| y = round((old_h - old_h * (old_aspect / new_aspect)) / 2) | |
| s = samples[:, :, y : old_h - y, x : old_w - x] | |
| else: | |
| s = samples | |
| return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) | |
| def upscale(samples, upscale_method, scale_by): | |
| width = round(samples["images"].shape[3] * scale_by) | |
| height = round(samples["images"].shape[2] * scale_by) | |
| s = common_upscale(samples["images"], width, height, upscale_method, "disabled") | |
| return s | |
| def check_inputs(prompt: str, control_image: Image.Image): | |
| if control_image is None: | |
| raise gr.Error("Please select or upload an Input Illusion") | |
| if not prompt: | |
| raise gr.Error("Prompt is required") | |
| # ----------------------------- | |
| # Inference | |
| # ----------------------------- | |
| def inference( | |
| control_image: Image.Image, | |
| prompt: str, | |
| negative_prompt: str, | |
| guidance_scale: float = 8.0, | |
| controlnet_conditioning_scale: float = 1.0, | |
| control_guidance_start: float = 1.0, | |
| control_guidance_end: float = 1.0, | |
| upscaler_strength: float = 0.5, | |
| seed: int = -1, | |
| sampler: str = "DPM++ Karras SDE", | |
| progress = gr.Progress(track_tqdm=True), | |
| profile: gr.OAuthProfile | None = None, | |
| ): | |
| start_time = time.time() | |
| control_image_small = center_crop_resize(control_image, (512, 512)) | |
| control_image_large = center_crop_resize(control_image, (1024, 1024)) | |
| main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config) | |
| my_seed = random.randint(0, 2**32 - 1) if seed == -1 else int(seed) | |
| generator = torch.Generator(device=device).manual_seed(my_seed) | |
| # First pass -> latents | |
| out = main_pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image=control_image_small, | |
| guidance_scale=float(guidance_scale), | |
| controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
| generator=generator, | |
| control_guidance_start=float(control_guidance_start), | |
| control_guidance_end=float(control_guidance_end), | |
| num_inference_steps=15, | |
| output_type="latent", | |
| ) | |
| # Upscale latents | |
| upscaled_latents = upscale(out, "nearest-exact", 2) | |
| # Second pass -> image | |
| out_image = image_pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| control_image=control_image_large, | |
| image=upscaled_latents, | |
| guidance_scale=float(guidance_scale), | |
| generator=generator, | |
| num_inference_steps=20, | |
| strength=float(upscaler_strength), | |
| control_guidance_start=float(control_guidance_start), | |
| control_guidance_end=float(control_guidance_end), | |
| controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
| ) | |
| # Save history | |
| user_history.save_image( | |
| label=prompt, | |
| image=out_image["images"][0], | |
| profile=profile, | |
| metadata={ | |
| "prompt": prompt, | |
| "negative_prompt": negative_prompt, | |
| "guidance_scale": guidance_scale, | |
| "controlnet_conditioning_scale": controlnet_conditioning_scale, | |
| "control_guidance_start": control_guidance_start, | |
| "control_guidance_end": control_guidance_end, | |
| "upscaler_strength": upscaler_strength, | |
| "seed": my_seed, | |
| "sampler": sampler, | |
| }, | |
| ) | |
| return out_image["images"][0], gr.update(visible=True), gr.update(visible=True), my_seed | |
| # ----------------------------- | |
| # UI | |
| # ----------------------------- | |
| with gr.Blocks() as app: | |
| gr.Markdown( | |
| ''' | |
| <div style="text-align: center;"> | |
| <h1>Illusion Diffusion HQ ๐</h1> | |
| <p style="font-size:16px;">Generate high-quality illusion artwork with Stable Diffusion + ControlNet</p> | |
| <p>A space by AP with contributions from the community.</p> | |
| <p>This uses <a href="https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster">Monster Labs QR ControlNet</a>.</p> | |
| </div> | |
| ''' | |
| ) | |
| state_img_input = gr.State() | |
| state_img_output = gr.State() | |
| with gr.Row(): | |
| with gr.Column(): | |
| control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image") | |
| controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", elem_id="illusion_strength", info="ControlNet conditioning scale") | |
| gr.Examples( | |
| examples=["checkers.png", "checkers_mid.jpg", "pattern.png", "ultra_checkers.png", "spiral.jpeg", "funky.jpeg"], | |
| inputs=control_image | |
| ) | |
| prompt = gr.Textbox(label="Prompt", elem_id="prompt", info="Type what you want to generate", placeholder="Medieval village scene with busy streets and a castle in the distance") | |
| negative_prompt = gr.Textbox(label="Negative Prompt", info="What you do NOT want", value="low quality, blurry", elem_id="negative_prompt") | |
| with gr.Accordion(label="Advanced Options", open=False): | |
| guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale") | |
| sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler", label="Sampler") | |
| control_start = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.0, label="Start of ControlNet") | |
| control_end = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="End of ControlNet") | |
| strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Strength of the upscaler") | |
| seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=-1, label="Seed", info="-1 = random") | |
| used_seed = gr.Number(label="Last seed used", interactive=False) | |
| run_btn = gr.Button("Run") | |
| with gr.Column(): | |
| result_image = gr.Image(label="Illusion Diffusion Output", interactive=False, elem_id="output") | |
| with gr.Group(elem_id="share-btn-container", visible=False) as share_group: | |
| community_icon = gr.HTML(community_icon_html) | |
| loading_icon = gr.HTML(loading_icon_html) | |
| share_button = gr.Button("Share to community", elem_id="share-btn") | |
| # Wire up | |
| prompt.submit( | |
| check_inputs, | |
| inputs=[prompt, control_image], | |
| queue=False | |
| ).success( | |
| inference, | |
| inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler], | |
| outputs=[result_image, result_image, share_group, used_seed] | |
| ) | |
| run_btn.click( | |
| check_inputs, | |
| inputs=[prompt, control_image], | |
| queue=False | |
| ).success( | |
| inference, | |
| inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler], | |
| outputs=[result_image, result_image, share_group, used_seed] | |
| ) | |
| share_button.click(None, [], [], js=share_js) | |
| with gr.Blocks(css=css) as app_with_history: | |
| with gr.Tab("Demo"): | |
| app.render() | |
| with gr.Tab("Past generations"): | |
| user_history.render() | |
| app_with_history.queue(max_size=20, api_open=False) | |
| if __name__ == "__main__": | |
| app_with_history.launch(max_threads=400) |