Alamgirapi commited on
Commit
e6c2921
ยท
verified ยท
1 Parent(s): 6b934fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +302 -359
app.py CHANGED
@@ -2,441 +2,384 @@ import streamlit as st
2
  import pandas as pd
3
  import matplotlib.pyplot as plt
4
  import numpy as np
5
- from NoCodeTextClassifier.EDA import Informations, Visualizations
6
- from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
7
- from NoCodeTextClassifier.preprocessing import process, TextCleaner, Vectorization
8
- from NoCodeTextClassifier.models import Models
9
  import os
10
  import pickle
11
- from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
12
  import io
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  # Set page config
15
- st.set_page_config(page_title="Text Classification App", page_icon="๐Ÿ“", layout="wide")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
- # Utility functions
18
  def save_artifacts(obj, folder_name, file_name):
19
- """Save artifacts like encoders and vectorizers"""
 
20
  try:
21
  os.makedirs(folder_name, exist_ok=True)
22
- with open(os.path.join(folder_name, file_name), 'wb') as f:
 
 
23
  pickle.dump(obj, f)
 
 
24
  return True
 
25
  except Exception as e:
26
- st.error(f"Error saving {file_name}: {str(e)}")
 
 
27
  return False
28
 
29
  def load_artifacts(folder_name, file_name):
30
- """Load saved artifacts"""
 
31
  try:
32
- with open(os.path.join(folder_name, file_name), 'rb') as f:
33
- return pickle.load(f)
34
- except FileNotFoundError:
35
- st.error(f"File {file_name} not found in {folder_name} folder")
36
- return None
 
 
 
 
 
 
 
37
  except Exception as e:
38
- st.error(f"Error loading {file_name}: {str(e)}")
 
 
39
  return None
40
 
41
  def load_model(model_name):
42
- """Load trained model"""
43
- try:
44
- with open(os.path.join('models', model_name), 'rb') as f:
45
- return pickle.load(f)
46
- except FileNotFoundError:
47
- st.error(f"Model {model_name} not found. Please train a model first.")
48
- return None
49
- except Exception as e:
50
- st.error(f"Error loading model {model_name}: {str(e)}")
51
- return None
52
-
53
- def safe_read_csv(uploaded_file, encoding_options=['utf-8', 'latin1', 'iso-8859-1', 'cp1252']):
54
- """Safely read CSV with multiple encoding options"""
55
- for encoding in encoding_options:
56
- try:
57
- # Reset file pointer
58
- uploaded_file.seek(0)
59
- # Read as bytes first, then decode
60
- content = uploaded_file.read()
61
- if isinstance(content, bytes):
62
- content = content.decode(encoding)
63
-
64
- # Use StringIO to create a file-like object
65
- df = pd.read_csv(io.StringIO(content))
66
- st.success(f"File loaded successfully with {encoding} encoding")
67
- return df
68
-
69
- except UnicodeDecodeError:
70
- continue
71
- except Exception as e:
72
- st.warning(f"Failed to read with {encoding} encoding: {str(e)}")
73
- continue
74
-
75
- # If all encodings fail, try pandas default
76
- try:
77
- uploaded_file.seek(0)
78
- df = pd.read_csv(uploaded_file)
79
- st.success("File loaded with default encoding")
80
- return df
81
- except Exception as e:
82
- st.error(f"All encoding attempts failed. Error: {str(e)}")
83
- return None
84
 
85
  def predict_text(model_name, text, vectorizer_type="tfidf"):
86
- """Make prediction on new text"""
 
 
87
  try:
88
- # Load model
89
  model = load_model(model_name)
90
  if model is None:
91
  return None, None
92
 
93
- # Load vectorizer
94
  vectorizer_file = f"{vectorizer_type}_vectorizer.pkl"
95
  vectorizer = load_artifacts("artifacts", vectorizer_file)
96
  if vectorizer is None:
97
  return None, None
98
 
99
- # Load label encoder
100
  encoder = load_artifacts("artifacts", "encoder.pkl")
101
  if encoder is None:
102
  return None, None
103
 
104
- # Clean and vectorize text
105
  text_cleaner = TextCleaner()
106
  clean_text = text_cleaner.clean_text(text)
 
107
 
108
- # Transform text using the same vectorizer used during training
109
  text_vector = vectorizer.transform([clean_text])
 
110
 
111
- # Make prediction
112
  prediction = model.predict(text_vector)
113
  prediction_proba = None
114
 
115
- # Get prediction probabilities if available
116
  if hasattr(model, 'predict_proba'):
117
  try:
118
  prediction_proba = model.predict_proba(text_vector)[0]
 
119
  except:
120
- pass
121
 
122
- # Decode prediction
123
  predicted_label = encoder.inverse_transform(prediction)[0]
 
124
 
125
  return predicted_label, prediction_proba
126
 
127
  except Exception as e:
128
- st.error(f"Error during prediction: {str(e)}")
 
 
 
 
129
  return None, None
130
 
131
- # Streamlit App
132
- st.title('๐Ÿ“ No Code Text Classification App')
133
- st.write('Understand the behavior of your text data and train a model to classify the text data')
134
 
135
- # Sidebar
136
- st.sidebar.title("Navigation")
137
- section = st.sidebar.radio("Choose Section", ["Data Analysis", "Train Model", "Predictions"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
 
139
- # Upload Data
140
- st.sidebar.subheader("๐Ÿ“ Upload Your Dataset")
141
- train_data = st.sidebar.file_uploader("Upload training data", type=["csv"], key="train_upload")
142
- test_data = st.sidebar.file_uploader("Upload test data (optional)", type=["csv"], key="test_upload")
143
 
144
- # Global variables to store data and settings
145
  if 'vectorizer_type' not in st.session_state:
146
  st.session_state.vectorizer_type = "tfidf"
147
  if 'train_df' not in st.session_state:
148
  st.session_state.train_df = None
149
- if 'info' not in st.session_state:
150
- st.session_state.info = None
151
 
152
- # Process uploaded data
153
- if train_data is not None:
154
- try:
155
- # Use safe CSV reading function
156
- train_df = safe_read_csv(train_data)
 
 
 
 
 
157
 
158
- if train_df is not None:
159
- st.session_state.train_df = train_df
160
-
161
- if test_data is not None:
162
- test_df = safe_read_csv(test_data)
163
- st.session_state.test_df = test_df
164
- else:
165
- st.session_state.test_df = None
166
-
167
- st.sidebar.success("โœ… Data loaded successfully!")
168
- st.write("Training Data Preview:")
169
- st.write(train_df.head(3))
170
-
171
- columns = train_df.columns.tolist()
172
- text_data = st.sidebar.selectbox("Choose the text column:", columns, key="text_col")
173
- target = st.sidebar.selectbox("Choose the target column:", columns, key="target_col")
174
-
175
- if text_data and target:
176
- try:
177
- # Process data
178
- info = Informations(train_df, text_data, target)
179
- train_df['clean_text'] = info.clean_text()
180
- train_df['text_length'] = info.text_length()
181
-
182
- # Handle label encoding manually
183
- from sklearn.preprocessing import LabelEncoder
184
- label_encoder = LabelEncoder()
185
- train_df['target'] = label_encoder.fit_transform(train_df[target])
186
-
187
- # Save label encoder for later use
188
- if save_artifacts(label_encoder, "artifacts", "encoder.pkl"):
189
- st.sidebar.success("โœ… Data processed successfully!")
190
-
191
- st.session_state.train_df = train_df
192
- st.session_state.info = info
193
-
194
- except Exception as e:
195
- st.error(f"Error processing data: {str(e)}")
196
- st.session_state.train_df = None
197
- st.session_state.info = None
198
 
199
- except Exception as e:
200
- st.error(f"Error loading data: {str(e)}")
201
- st.session_state.train_df = None
202
- st.session_state.info = None
203
-
204
- # Get data from session state
205
- train_df = st.session_state.get('train_df')
206
- info = st.session_state.get('info')
207
-
208
- # Data Analysis Section
209
- if section == "Data Analysis":
210
- if train_data is not None and train_df is not None:
211
- try:
212
- st.subheader("๐Ÿ“Š Get Insights from the Data")
213
-
214
- col1, col2, col3 = st.columns(3)
215
- with col1:
216
- st.metric("Data Shape", f"{info.shape()[0]} rows ร— {info.shape()[1]} cols")
217
- with col2:
218
- st.metric("Classes", len(train_df['target'].unique()))
219
- with col3:
220
- st.metric("Missing Values", info.missing_values())
221
-
222
- st.write("**Class Distribution:**", info.class_imbalanced())
223
-
224
- st.write("**Processed Data Preview:**")
225
- st.write(train_df[['clean_text', 'text_length', 'target']].head(3))
226
 
227
- st.markdown("**Text Length Analysis**")
228
- st.write(info.analysis_text_length('text_length'))
229
 
230
- # Calculate correlation manually
231
- correlation = train_df[['text_length', 'target']].corr().iloc[0, 1]
232
- st.write(f"**Correlation between Text Length and Target:** {correlation:.4f}")
233
-
234
- st.subheader("๐Ÿ“ˆ Visualizations")
235
 
236
- try:
237
- columns = train_df.columns.tolist()
238
- text_col = next((col for col in columns if 'text' in col.lower() or col in ['message', 'content', 'review']), columns[0])
239
- target_col = next((col for col in columns if col in ['label', 'target', 'class', 'category']), columns[-1])
240
-
241
- vis = Visualizations(train_df, text_col, target_col)
242
- vis.class_distribution()
243
- vis.text_length_distribution()
244
- except Exception as e:
245
- st.error(f"Error generating visualizations: {str(e)}")
246
 
247
- except Exception as e:
248
- st.error(f"Error in data analysis: {str(e)}")
 
 
 
 
 
 
 
 
 
 
 
 
 
249
  else:
250
- st.warning("โš ๏ธ Please upload training data to get insights")
251
 
252
- # Train Model Section
253
  elif section == "Train Model":
254
- if train_data is not None and train_df is not None:
255
- try:
256
- st.subheader("๐Ÿค– Train a Model")
257
-
258
- # Create two columns for model selection
259
- col1, col2 = st.columns(2)
260
-
261
- with col1:
262
- st.markdown("**Select Model:**")
263
- model = st.radio("Choose the Model", [
264
- "Logistic Regression", "Decision Tree",
265
- "Random Forest", "Linear SVC", "SVC",
266
- "Multinomial Naive Bayes", "Gaussian Naive Bayes"
267
- ])
268
-
269
- with col2:
270
- st.markdown("**Select Vectorizer:**")
271
- vectorizer_choice = st.radio("Choose Vectorizer", ["Tfidf Vectorizer", "Count Vectorizer"])
272
-
273
- # Initialize vectorizer
274
- if vectorizer_choice == "Tfidf Vectorizer":
275
- vectorizer = TfidfVectorizer(max_features=10000, stop_words='english')
276
- st.session_state.vectorizer_type = "tfidf"
277
- else:
278
- vectorizer = CountVectorizer(max_features=10000, stop_words='english')
279
- st.session_state.vectorizer_type = "count"
280
-
281
- st.write("**Training Data Preview:**")
282
- st.write(train_df[['clean_text', 'target']].head(3))
283
-
284
- # Vectorize text data
285
- with st.spinner("Vectorizing text data..."):
286
- X = vectorizer.fit_transform(train_df['clean_text'])
287
- y = train_df['target']
288
-
289
- # Split data
290
- X_train, X_test, y_train, y_test = process.split_data(X, y)
291
- st.write(f"**Data split** - Train: {X_train.shape}, Test: {X_test.shape}")
292
-
293
- # Save vectorizer for later use
294
- vectorizer_filename = f"{st.session_state.vectorizer_type}_vectorizer.pkl"
295
- save_artifacts(vectorizer, "artifacts", vectorizer_filename)
296
-
297
- if st.button("๐Ÿš€ Start Training", type="primary"):
298
- with st.spinner("Training model..."):
299
- try:
300
- models = Models(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test)
301
-
302
- # Train selected model
303
- if model == "Logistic Regression":
304
- models.LogisticRegression()
305
- elif model == "Decision Tree":
306
- models.DecisionTree()
307
- elif model == "Linear SVC":
308
- models.LinearSVC()
309
- elif model == "SVC":
310
- models.SVC()
311
- elif model == "Multinomial Naive Bayes":
312
- models.MultinomialNB()
313
- elif model == "Random Forest":
314
- models.RandomForestClassifier()
315
- elif model == "Gaussian Naive Bayes":
316
- models.GaussianNB()
317
-
318
- st.success("๐ŸŽ‰ Model training completed!")
319
- st.info("You can now use the 'Predictions' section to classify new text.")
320
-
321
- except Exception as e:
322
- st.error(f"Error during model training: {str(e)}")
323
-
324
- except Exception as e:
325
- st.error(f"Error in model training: {str(e)}")
326
  else:
327
- st.warning("โš ๏ธ Please upload training data to train a model")
328
 
329
- # Predictions Section
330
  elif section == "Predictions":
331
- st.subheader("๐Ÿ”ฎ Perform Predictions on New Text")
 
332
 
333
- # Check if models exist
334
- if os.path.exists("models") and os.listdir("models"):
335
- # Text input for prediction
336
- text_input = st.text_area("Enter the text to classify:", height=100, placeholder="Type your text here...")
337
-
338
- # Model selection
339
- available_models = [f for f in os.listdir("models") if f.endswith('.pkl')]
340
-
341
- if available_models:
342
- selected_model = st.selectbox("Choose the trained model:", available_models)
343
-
344
- # Prediction button
345
- if st.button("๐ŸŽฏ Predict", key="single_predict", type="primary"):
346
- if text_input.strip():
347
- with st.spinner("Making prediction..."):
348
- predicted_label, prediction_proba = predict_text(
349
- selected_model,
350
- text_input,
351
- st.session_state.get('vectorizer_type', 'tfidf')
352
- )
353
-
354
- if predicted_label is not None:
355
- st.success("โœ… Prediction completed!")
356
-
357
- # Display results
358
- st.markdown("### ๐Ÿ“Š Prediction Results")
359
-
360
- col1, col2 = st.columns([2, 1])
361
- with col1:
362
- st.markdown(f"**Input Text:** {text_input}")
363
- with col2:
364
- st.markdown(f"**Predicted Class:** `{predicted_label}`")
365
-
366
- # Display probabilities if available
367
- if prediction_proba is not None:
368
- st.markdown("**Class Probabilities:**")
369
-
370
- # Load encoder to get class names
371
- encoder = load_artifacts("artifacts", "encoder.pkl")
372
- if encoder is not None:
373
- classes = encoder.classes_
374
- prob_df = pd.DataFrame({
375
- 'Class': classes,
376
- 'Probability': prediction_proba
377
- }).sort_values('Probability', ascending=False)
378
-
379
- col1, col2 = st.columns(2)
380
- with col1:
381
- st.bar_chart(prob_df.set_index('Class'))
382
- with col2:
383
- st.dataframe(prob_df, use_container_width=True)
384
- else:
385
- st.warning("โš ๏ธ Please enter some text to classify")
386
  else:
387
- st.warning("โš ๏ธ No trained models found. Please train a model first.")
388
  else:
389
- st.warning("โš ๏ธ No trained models found. Please go to 'Train Model' section to train a model first.")
390
-
391
- # Option to classify multiple texts
392
- st.markdown("---")
393
- st.subheader("๐Ÿ“Š Batch Predictions")
394
-
395
- uploaded_file = st.file_uploader("Upload a CSV file with text to classify", type=['csv'], key="batch_upload")
396
-
397
- if uploaded_file is not None:
398
- try:
399
- batch_df = safe_read_csv(uploaded_file)
400
-
401
- if batch_df is not None:
402
- st.write("**Uploaded data preview:**")
403
- st.write(batch_df.head())
404
-
405
- # Select text column
406
- text_column = st.selectbox("Select the text column:", batch_df.columns.tolist())
407
-
408
- if os.path.exists("models") and os.listdir("models"):
409
- available_models = [f for f in os.listdir("models") if f.endswith('.pkl')]
410
- batch_model = st.selectbox("Choose model for batch prediction:", available_models, key="batch_model")
411
-
412
- if st.button("๐Ÿš€ Run Batch Predictions", key="batch_predict", type="primary"):
413
- with st.spinner("Processing batch predictions..."):
414
- predictions = []
415
- progress_bar = st.progress(0)
416
-
417
- for idx, text in enumerate(batch_df[text_column]):
418
- pred, _ = predict_text(
419
- batch_model,
420
- str(text),
421
- st.session_state.get('vectorizer_type', 'tfidf')
422
- )
423
- predictions.append(pred if pred is not None else "Error")
424
- progress_bar.progress((idx + 1) / len(batch_df))
425
-
426
- batch_df['Predicted_Class'] = predictions
427
-
428
- st.success("โœ… Batch predictions completed!")
429
- st.write("**Results:**")
430
- st.write(batch_df[[text_column, 'Predicted_Class']])
431
-
432
- # Download results
433
- csv = batch_df.to_csv(index=False)
434
- st.download_button(
435
- label="๐Ÿ“ฅ Download predictions as CSV",
436
- data=csv,
437
- file_name="batch_predictions.csv",
438
- mime="text/csv"
439
- )
440
-
441
- except Exception as e:
442
- st.error(f"Error in batch prediction: {str(e)}")
 
2
  import pandas as pd
3
  import matplotlib.pyplot as plt
4
  import numpy as np
 
 
 
 
5
  import os
6
  import pickle
 
7
  import io
8
+ import traceback
9
+ import sys
10
+ from datetime import datetime
11
+
12
+ # Import ML libraries with error handling
13
+ try:
14
+ from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
15
+ from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
16
+ from sklearn.preprocessing import LabelEncoder
17
+ st.success("โœ… Sklearn imported successfully")
18
+ except ImportError as e:
19
+ st.error(f"โŒ Sklearn import error: {e}")
20
+
21
+ # Import custom modules with error handling
22
+ try:
23
+ from NoCodeTextClassifier.EDA import Informations, Visualizations
24
+ from NoCodeTextClassifier.preprocessing import process, TextCleaner, Vectorization
25
+ from NoCodeTextClassifier.models import Models
26
+ st.success("โœ… NoCodeTextClassifier imported successfully")
27
+ except ImportError as e:
28
+ st.error(f"โŒ NoCodeTextClassifier import error: {e}")
29
+ st.info("Please ensure NoCodeTextClassifier package is installed")
30
 
31
  # Set page config
32
+ st.set_page_config(page_title="Debug Text Classification", page_icon="๐Ÿ”", layout="wide")
33
+
34
+ # Debug section
35
+ st.sidebar.header("๐Ÿ” Debug Information")
36
+ debug_mode = st.sidebar.checkbox("Enable Debug Mode", value=True)
37
+
38
+ def debug_log(message, level="INFO"):
39
+ """Debug logging function"""
40
+ if debug_mode:
41
+ timestamp = datetime.now().strftime("%H:%M:%S")
42
+ st.sidebar.write(f"**{timestamp} [{level}]:** {message}")
43
+
44
+ def detailed_error_info(e):
45
+ """Get detailed error information"""
46
+ error_type = type(e).__name__
47
+ error_message = str(e)
48
+ error_traceback = traceback.format_exc()
49
+
50
+ return {
51
+ 'type': error_type,
52
+ 'message': error_message,
53
+ 'traceback': error_traceback
54
+ }
55
+
56
+ def inspect_uploaded_file(uploaded_file):
57
+ """Inspect uploaded file properties"""
58
+ debug_log("๐Ÿ” Inspecting uploaded file...")
59
+
60
+ try:
61
+ file_info = {
62
+ 'name': uploaded_file.name,
63
+ 'type': uploaded_file.type,
64
+ 'size': uploaded_file.size,
65
+ 'file_id': getattr(uploaded_file, 'file_id', 'Not available')
66
+ }
67
+
68
+ debug_log(f"File name: {file_info['name']}")
69
+ debug_log(f"File type: {file_info['type']}")
70
+ debug_log(f"File size: {file_info['size']} bytes")
71
+ debug_log(f"File ID: {file_info['file_id']}")
72
+
73
+ # Try to read first few bytes
74
+ uploaded_file.seek(0)
75
+ first_bytes = uploaded_file.read(100)
76
+ debug_log(f"First 100 bytes type: {type(first_bytes)}")
77
+ debug_log(f"First 100 bytes preview: {first_bytes[:50]}...")
78
+
79
+ # Reset file pointer
80
+ uploaded_file.seek(0)
81
+
82
+ return file_info
83
+
84
+ except Exception as e:
85
+ error_info = detailed_error_info(e)
86
+ debug_log(f"โŒ Error inspecting file: {error_info['type']}: {error_info['message']}", "ERROR")
87
+ st.sidebar.error(f"File inspection error: {error_info['message']}")
88
+ return None
89
+
90
+ def safe_read_csv_debug(uploaded_file, encoding_options=['utf-8', 'latin1', 'iso-8859-1', 'cp1252']):
91
+ """Safely read CSV with extensive debugging"""
92
+ debug_log("๐Ÿ”„ Starting CSV read process...")
93
+
94
+ # Inspect file first
95
+ file_info = inspect_uploaded_file(uploaded_file)
96
+ if file_info is None:
97
+ return None
98
+
99
+ # Try different reading methods
100
+ methods = [
101
+ ("Direct pandas read", lambda f: pd.read_csv(f)),
102
+ ("BytesIO method", lambda f: pd.read_csv(io.BytesIO(f.read()))),
103
+ ("StringIO method", lambda f: pd.read_csv(io.StringIO(f.read().decode('utf-8')))),
104
+ ]
105
+
106
+ for method_name, method_func in methods:
107
+ debug_log(f"๐Ÿ”„ Trying method: {method_name}")
108
+
109
+ for encoding in encoding_options:
110
+ try:
111
+ debug_log(f" - Attempting encoding: {encoding}")
112
+ uploaded_file.seek(0)
113
+
114
+ if method_name == "Direct pandas read":
115
+ df = pd.read_csv(uploaded_file, encoding=encoding)
116
+ elif method_name == "BytesIO method":
117
+ uploaded_file.seek(0)
118
+ content = uploaded_file.read()
119
+ df = pd.read_csv(io.BytesIO(content), encoding=encoding)
120
+ elif method_name == "StringIO method":
121
+ uploaded_file.seek(0)
122
+ content = uploaded_file.read()
123
+ if isinstance(content, bytes):
124
+ content = content.decode(encoding)
125
+ df = pd.read_csv(io.StringIO(content))
126
+
127
+ debug_log(f"โœ… Success with {method_name} + {encoding}")
128
+ debug_log(f"DataFrame shape: {df.shape}")
129
+ debug_log(f"Columns: {list(df.columns)}")
130
+
131
+ st.success(f"File loaded successfully using {method_name} with {encoding} encoding")
132
+ return df
133
+
134
+ except UnicodeDecodeError as e:
135
+ debug_log(f" - Unicode error with {encoding}: {str(e)}", "WARNING")
136
+ continue
137
+ except Exception as e:
138
+ error_info = detailed_error_info(e)
139
+ debug_log(f" - Error with {method_name} + {encoding}: {error_info['type']}: {error_info['message']}", "ERROR")
140
+
141
+ # Show detailed error for 403 or permission errors
142
+ if "403" in str(e) or "permission" in str(e).lower():
143
+ st.error("๐Ÿšจ PERMISSION ERROR DETECTED!")
144
+ st.error(f"Method: {method_name}, Encoding: {encoding}")
145
+ st.error(f"Error type: {error_info['type']}")
146
+ st.error(f"Error message: {error_info['message']}")
147
+ st.code(error_info['traceback'])
148
+
149
+ continue
150
+
151
+ debug_log("โŒ All reading methods failed", "ERROR")
152
+ st.error("All CSV reading methods failed. Check debug log for details.")
153
+ return None
154
 
155
+ # Utility functions with debugging
156
  def save_artifacts(obj, folder_name, file_name):
157
+ """Save artifacts with debugging"""
158
+ debug_log(f"๐Ÿ’พ Saving {file_name} to {folder_name}")
159
  try:
160
  os.makedirs(folder_name, exist_ok=True)
161
+ full_path = os.path.join(folder_name, file_name)
162
+
163
+ with open(full_path, 'wb') as f:
164
  pickle.dump(obj, f)
165
+
166
+ debug_log(f"โœ… Successfully saved {file_name}")
167
  return True
168
+
169
  except Exception as e:
170
+ error_info = detailed_error_info(e)
171
+ debug_log(f"โŒ Error saving {file_name}: {error_info['message']}", "ERROR")
172
+ st.error(f"Save error: {error_info['message']}")
173
  return False
174
 
175
  def load_artifacts(folder_name, file_name):
176
+ """Load artifacts with debugging"""
177
+ debug_log(f"๐Ÿ“‚ Loading {file_name} from {folder_name}")
178
  try:
179
+ full_path = os.path.join(folder_name, file_name)
180
+
181
+ if not os.path.exists(full_path):
182
+ debug_log(f"โŒ File not found: {full_path}", "ERROR")
183
+ return None
184
+
185
+ with open(full_path, 'rb') as f:
186
+ obj = pickle.load(f)
187
+
188
+ debug_log(f"โœ… Successfully loaded {file_name}")
189
+ return obj
190
+
191
  except Exception as e:
192
+ error_info = detailed_error_info(e)
193
+ debug_log(f"โŒ Error loading {file_name}: {error_info['message']}", "ERROR")
194
+ st.error(f"Load error: {error_info['message']}")
195
  return None
196
 
197
  def load_model(model_name):
198
+ """Load model with debugging"""
199
+ debug_log(f"๐Ÿค– Loading model: {model_name}")
200
+ return load_artifacts("models", model_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
 
202
  def predict_text(model_name, text, vectorizer_type="tfidf"):
203
+ """Make prediction with debugging"""
204
+ debug_log(f"๐Ÿ”ฎ Starting prediction with {model_name}")
205
+
206
  try:
207
+ # Load components
208
  model = load_model(model_name)
209
  if model is None:
210
  return None, None
211
 
 
212
  vectorizer_file = f"{vectorizer_type}_vectorizer.pkl"
213
  vectorizer = load_artifacts("artifacts", vectorizer_file)
214
  if vectorizer is None:
215
  return None, None
216
 
 
217
  encoder = load_artifacts("artifacts", "encoder.pkl")
218
  if encoder is None:
219
  return None, None
220
 
221
+ debug_log("๐Ÿงน Cleaning text...")
222
  text_cleaner = TextCleaner()
223
  clean_text = text_cleaner.clean_text(text)
224
+ debug_log(f"Cleaned text preview: {clean_text[:50]}...")
225
 
226
+ debug_log("๐Ÿ”ข Vectorizing text...")
227
  text_vector = vectorizer.transform([clean_text])
228
+ debug_log(f"Vector shape: {text_vector.shape}")
229
 
230
+ debug_log("๐ŸŽฏ Making prediction...")
231
  prediction = model.predict(text_vector)
232
  prediction_proba = None
233
 
 
234
  if hasattr(model, 'predict_proba'):
235
  try:
236
  prediction_proba = model.predict_proba(text_vector)[0]
237
+ debug_log(f"Prediction probabilities: {prediction_proba}")
238
  except:
239
+ debug_log("No prediction probabilities available", "WARNING")
240
 
 
241
  predicted_label = encoder.inverse_transform(prediction)[0]
242
+ debug_log(f"โœ… Prediction complete: {predicted_label}")
243
 
244
  return predicted_label, prediction_proba
245
 
246
  except Exception as e:
247
+ error_info = detailed_error_info(e)
248
+ debug_log(f"โŒ Prediction error: {error_info['message']}", "ERROR")
249
+ st.error(f"Prediction error: {error_info['message']}")
250
+ if debug_mode:
251
+ st.code(error_info['traceback'])
252
  return None, None
253
 
254
+ # Main App
255
+ st.title('๐Ÿ” Debug Text Classification App')
256
+ st.write('Debug version to identify and fix issues')
257
 
258
+ # Environment info
259
+ if debug_mode:
260
+ st.sidebar.subheader("๐Ÿ–ฅ๏ธ Environment Info")
261
+ st.sidebar.write(f"Python version: {sys.version}")
262
+ st.sidebar.write(f"Streamlit version: {st.__version__}")
263
+ st.sidebar.write(f"Pandas version: {pd.__version__}")
264
+ st.sidebar.write(f"Current working directory: {os.getcwd()}")
265
+
266
+ # Check directory permissions
267
+ try:
268
+ test_dir = "test_permissions"
269
+ os.makedirs(test_dir, exist_ok=True)
270
+ test_file = os.path.join(test_dir, "test.txt")
271
+ with open(test_file, 'w') as f:
272
+ f.write("test")
273
+ os.remove(test_file)
274
+ os.rmdir(test_dir)
275
+ st.sidebar.success("โœ… File system permissions OK")
276
+ except Exception as e:
277
+ st.sidebar.error(f"โŒ File system permission issue: {e}")
278
 
279
+ # Sidebar navigation
280
+ section = st.sidebar.radio("Choose Section", ["File Upload Debug", "Data Analysis", "Train Model", "Predictions"])
 
 
281
 
282
+ # Session state initialization
283
  if 'vectorizer_type' not in st.session_state:
284
  st.session_state.vectorizer_type = "tfidf"
285
  if 'train_df' not in st.session_state:
286
  st.session_state.train_df = None
 
 
287
 
288
+ # File Upload Debug Section
289
+ if section == "File Upload Debug":
290
+ st.subheader("๐Ÿ” File Upload Debugging")
291
+
292
+ st.info("This section helps debug file upload issues. Upload your file and see detailed error information.")
293
+
294
+ train_data = st.file_uploader("Upload training data (DEBUG MODE)", type=["csv"], key="debug_upload")
295
+
296
+ if train_data is not None:
297
+ st.write("### File Upload Detected!")
298
 
299
+ # Show raw file info
300
+ st.write("**Raw File Information:**")
301
+ st.json({
302
+ "name": train_data.name,
303
+ "type": train_data.type if hasattr(train_data, 'type') else "Unknown",
304
+ "size": train_data.size if hasattr(train_data, 'size') else "Unknown"
305
+ })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306
 
307
+ # Try to read the file
308
+ st.write("### Attempting to Read File...")
309
+
310
+ with st.spinner("Reading file with debug mode..."):
311
+ df = safe_read_csv_debug(train_data)
312
+
313
+ if df is not None:
314
+ st.success("๐ŸŽ‰ File successfully loaded!")
315
+ st.write("**Data Preview:**")
316
+ st.dataframe(df.head())
317
+ st.write(f"**Shape:** {df.shape}")
318
+ st.write(f"**Columns:** {list(df.columns)}")
319
+ st.write(f"**Data Types:**")
320
+ st.write(df.dtypes)
 
 
 
 
 
 
 
 
 
 
 
 
 
321
 
322
+ # Store in session state
323
+ st.session_state.train_df = df
324
 
325
+ else:
326
+ st.error("โŒ Failed to load file. Check the debug log for details.")
 
 
 
327
 
328
+ # Additional troubleshooting
329
+ st.write("### ๐Ÿ”ง Troubleshooting Steps:")
330
+ st.write("1. Check if your file is a valid CSV")
331
+ st.write("2. Try saving your CSV with different encoding (UTF-8 recommended)")
332
+ st.write("3. Check if file size is within limits")
333
+ st.write("4. Ensure no special characters in filename")
334
+ st.write("5. Try uploading from a different location")
 
 
 
335
 
336
+ # Other sections (simplified for debugging)
337
+ elif section == "Data Analysis":
338
+ st.subheader("๐Ÿ“Š Data Analysis")
339
+
340
+ if st.session_state.train_df is not None:
341
+ df = st.session_state.train_df
342
+ st.write("Using loaded data from debug session:")
343
+ st.dataframe(df.head())
344
+
345
+ # Basic analysis without custom modules if they fail
346
+ st.write(f"**Shape:** {df.shape}")
347
+ st.write(f"**Columns:** {list(df.columns)}")
348
+ st.write(f"**Missing values:**")
349
+ st.write(df.isnull().sum())
350
+
351
  else:
352
+ st.warning("No data loaded. Please use 'File Upload Debug' section first.")
353
 
 
354
  elif section == "Train Model":
355
+ st.subheader("๐Ÿค– Train Model")
356
+ st.info("Use this section after successfully loading data in debug mode.")
357
+
358
+ if st.session_state.train_df is not None:
359
+ st.success("Data available for training!")
360
+ # Add your training logic here
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361
  else:
362
+ st.warning("No data loaded. Please use 'File Upload Debug' section first.")
363
 
 
364
  elif section == "Predictions":
365
+ st.subheader("๐Ÿ”ฎ Predictions")
366
+ st.info("Use this section after training a model.")
367
 
368
+ # Check for trained models
369
+ if os.path.exists("models"):
370
+ models = [f for f in os.listdir("models") if f.endswith('.pkl')]
371
+ if models:
372
+ st.write(f"Available models: {models}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373
  else:
374
+ st.info("No trained models found.")
375
  else:
376
+ st.info("Models directory not found.")
377
+
378
+ # Debug summary
379
+ if debug_mode:
380
+ st.sidebar.markdown("---")
381
+ st.sidebar.subheader("๐Ÿ“‹ Debug Summary")
382
+ if st.session_state.train_df is not None:
383
+ st.sidebar.success("โœ… Data loaded successfully")
384
+ else:
385
+ st.sidebar.warning("โš ๏ธ No data loaded")