Spaces:
Sleeping
Sleeping
Upload folder NoCodeTextClassifier
Browse files- NoCodeTextClassifier/EDA.py +87 -0
- NoCodeTextClassifier/Inference.py +22 -0
- NoCodeTextClassifier/__init__.py +0 -0
- NoCodeTextClassifier/__pycache__/EDA.cpython-311.pyc +0 -0
- NoCodeTextClassifier/__pycache__/__init__.cpython-311.pyc +0 -0
- NoCodeTextClassifier/__pycache__/models.cpython-311.pyc +0 -0
- NoCodeTextClassifier/__pycache__/preprocessing.cpython-311.pyc +0 -0
- NoCodeTextClassifier/__pycache__/utils.cpython-311.pyc +0 -0
- NoCodeTextClassifier/exception/__init__.py +0 -0
- NoCodeTextClassifier/logger/__init__.py +0 -0
- NoCodeTextClassifier/main.py +24 -0
- NoCodeTextClassifier/models.py +107 -0
- NoCodeTextClassifier/preprocessing.py +196 -0
- NoCodeTextClassifier/utils.py +39 -0
NoCodeTextClassifier/EDA.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import seaborn as sns
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import numpy as np
|
| 5 |
+
from NoCodeTextClassifier.preprocessing import TextCleaner
|
| 6 |
+
from sklearn.preprocessing import LabelEncoder
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Informations:
|
| 10 |
+
def __init__(self, data, text_data, target):
|
| 11 |
+
self.data = data
|
| 12 |
+
self.text_data = text_data
|
| 13 |
+
self.target = target
|
| 14 |
+
|
| 15 |
+
def shape(self):
|
| 16 |
+
return self.data.shape
|
| 17 |
+
|
| 18 |
+
def class_imbalanced(self):
|
| 19 |
+
return self.data[self.target].value_counts()
|
| 20 |
+
|
| 21 |
+
def missing_values(self):
|
| 22 |
+
return self.data.isnull().sum()
|
| 23 |
+
|
| 24 |
+
def label_encoder(self):
|
| 25 |
+
encoder = LabelEncoder()
|
| 26 |
+
target = encoder.fit_transform(self.data[self.target])
|
| 27 |
+
return target
|
| 28 |
+
|
| 29 |
+
def clean_text(self):
|
| 30 |
+
text_cleaner = TextCleaner()
|
| 31 |
+
return self.data[self.text_data].apply(lambda x: text_cleaner.clean_text(x))
|
| 32 |
+
|
| 33 |
+
def text_length(self):
|
| 34 |
+
return self.data[self.text_data].apply(lambda x: len(x))
|
| 35 |
+
|
| 36 |
+
def analysis_text_length(self, text_length):
|
| 37 |
+
result = self.data[text_length].describe()
|
| 38 |
+
return result
|
| 39 |
+
|
| 40 |
+
def correlation(self, other_feature):
|
| 41 |
+
return self.data[other_feature].corr(self.data["target"])
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class Visualizations:
|
| 48 |
+
def __init__(self, data, text_data, target):
|
| 49 |
+
self.data = data
|
| 50 |
+
self.text_data = text_data
|
| 51 |
+
self.target = target
|
| 52 |
+
|
| 53 |
+
def simple_plot(self):
|
| 54 |
+
# Generate sample data
|
| 55 |
+
x = np.linspace(0, 10, 100)
|
| 56 |
+
y = np.sin(x)
|
| 57 |
+
fig, ax = plt.subplots()
|
| 58 |
+
ax.plot(x, y, label="Sine Wave")
|
| 59 |
+
ax.set_title("Matplotlib Plot in Streamlit")
|
| 60 |
+
ax.set_xlabel("X-axis")
|
| 61 |
+
ax.set_ylabel("Y-axis")
|
| 62 |
+
ax.legend()
|
| 63 |
+
# Display the plot in Streamlit
|
| 64 |
+
st.pyplot(fig)
|
| 65 |
+
|
| 66 |
+
def class_distribution(self):
|
| 67 |
+
fig, ax = plt.subplots()
|
| 68 |
+
sns.countplot(x=self.data[self.target], ax=ax,palette="pastel")
|
| 69 |
+
ax.set_title("Class Distribution")
|
| 70 |
+
ax.set_xlabel("Class")
|
| 71 |
+
ax.set_ylabel("Count")
|
| 72 |
+
st.pyplot(fig)
|
| 73 |
+
|
| 74 |
+
def text_length_distribution(self):
|
| 75 |
+
fig, ax = plt.subplots()
|
| 76 |
+
sns.histplot(self.data['text_length'], ax=ax, kde=True)
|
| 77 |
+
ax.set_title("Text Length Distribution")
|
| 78 |
+
ax.set_xlabel("Text Length")
|
| 79 |
+
ax.set_ylabel("Count")
|
| 80 |
+
st.pyplot(fig)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
NoCodeTextClassifier/Inference.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from NoCodeTextClassifier import preprocessing
|
| 2 |
+
from NoCodeTextClassifier import utils
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def prediction(text):
|
| 6 |
+
TextCleaner = preprocessing.TextCleaner()
|
| 7 |
+
clean_text = TextCleaner.clean_text(text)
|
| 8 |
+
|
| 9 |
+
vectorize = preprocessing.Vectorization()
|
| 10 |
+
vectorize_text = vectorize.TfidfVectorizer(eval=True, string=clean_text)
|
| 11 |
+
|
| 12 |
+
prediction = utils.prediction("DecisionTreeClassifier.pkl",vectorize_text)
|
| 13 |
+
|
| 14 |
+
encoder = utils.load_artifacts("artifacts","encoder.pkl")
|
| 15 |
+
output = encoder.inverse_transform(prediction)[0]
|
| 16 |
+
|
| 17 |
+
print(f"The prediction of given text : \t{output}")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
NoCodeTextClassifier/__init__.py
ADDED
|
File without changes
|
NoCodeTextClassifier/__pycache__/EDA.cpython-311.pyc
ADDED
|
Binary file (6.13 kB). View file
|
|
|
NoCodeTextClassifier/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (160 Bytes). View file
|
|
|
NoCodeTextClassifier/__pycache__/models.cpython-311.pyc
ADDED
|
Binary file (7.77 kB). View file
|
|
|
NoCodeTextClassifier/__pycache__/preprocessing.cpython-311.pyc
ADDED
|
Binary file (12.6 kB). View file
|
|
|
NoCodeTextClassifier/__pycache__/utils.cpython-311.pyc
ADDED
|
Binary file (2.73 kB). View file
|
|
|
NoCodeTextClassifier/exception/__init__.py
ADDED
|
File without changes
|
NoCodeTextClassifier/logger/__init__.py
ADDED
|
File without changes
|
NoCodeTextClassifier/main.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from NoCodeTextClassifier.preprocessing import *
|
| 2 |
+
from NoCodeTextClassifier.models import *
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__=="__main__":
|
| 6 |
+
data_path = r"C:\Users\abdullah\projects\NLP_project\NoCodeTextClassifier\ML Engineer\train.csv"
|
| 7 |
+
|
| 8 |
+
process = process(data_path,'email','class')
|
| 9 |
+
|
| 10 |
+
df = process.processing()
|
| 11 |
+
|
| 12 |
+
print(df.head())
|
| 13 |
+
|
| 14 |
+
Vectorization = Vectorization(df,'clean_text')
|
| 15 |
+
|
| 16 |
+
TfidfVectorizer = Vectorization.TfidfVectorizer(max_features= 10000)
|
| 17 |
+
print(TfidfVectorizer.toarray())
|
| 18 |
+
X_train, X_test, y_train, y_test = process.split_data(TfidfVectorizer.toarray(), df['labeled_target'])
|
| 19 |
+
|
| 20 |
+
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
|
| 21 |
+
# print(X_train, y_train)
|
| 22 |
+
models = Models(X_train=X_train,X_test = X_test, y_train = y_train, y_test = y_test)
|
| 23 |
+
|
| 24 |
+
models.DecisionTree()
|
NoCodeTextClassifier/models.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sklearn.neighbors import KNeighborsClassifier
|
| 2 |
+
from sklearn.ensemble import GradientBoostingClassifier
|
| 3 |
+
import xgboost as xgb
|
| 4 |
+
import streamlit as st
|
| 5 |
+
# import lightgbm as lgb
|
| 6 |
+
# from catboost import CatBoostClassifier
|
| 7 |
+
|
| 8 |
+
from NoCodeTextClassifier.utils import *
|
| 9 |
+
|
| 10 |
+
class Models:
|
| 11 |
+
def __init__(self, X_train,X_test, y_train, y_test):
|
| 12 |
+
self.X_train = X_train
|
| 13 |
+
self.y_train = y_train
|
| 14 |
+
self.X_test = X_test
|
| 15 |
+
self.y_test = y_test
|
| 16 |
+
os.makedirs("models",exist_ok=True)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def LogisticRegression(self, **kwargs):
|
| 20 |
+
from sklearn.linear_model import LogisticRegression
|
| 21 |
+
model = LogisticRegression(**kwargs)
|
| 22 |
+
model.fit(self.X_train, self.y_train)
|
| 23 |
+
save_path = os.path.join("models", 'LogisticRegression.pkl')
|
| 24 |
+
with open(save_path, 'wb') as f:
|
| 25 |
+
pickle.dump(model, f)
|
| 26 |
+
print("Training Completed")
|
| 27 |
+
st.markdown("**Training Completed**")
|
| 28 |
+
|
| 29 |
+
evaluation('LogisticRegression.pkl', self.X_test,self.y_test)
|
| 30 |
+
print("Finished")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def DecisionTree(self, **kwargs):
|
| 35 |
+
from sklearn.tree import DecisionTreeClassifier
|
| 36 |
+
model = DecisionTreeClassifier(**kwargs)
|
| 37 |
+
model.fit(self.X_train, self.y_train)
|
| 38 |
+
save_path = os.path.join("models", 'DecisionTreeClassifier.pkl')
|
| 39 |
+
with open(save_path, 'wb') as f:
|
| 40 |
+
pickle.dump(model, f)
|
| 41 |
+
print("Training Completed")
|
| 42 |
+
evaluation('DecisionTreeClassifier.pkl', self.X_test,self.y_test)
|
| 43 |
+
print("Finished")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def LinearSVC(self, **kwargs):
|
| 47 |
+
from sklearn.svm import LinearSVC
|
| 48 |
+
model = LinearSVC(**kwargs)
|
| 49 |
+
model.fit(self.X_train, self.y_train)
|
| 50 |
+
save_path = os.path.join("models", 'LinearSVC.pkl')
|
| 51 |
+
with open(save_path, 'wb') as f:
|
| 52 |
+
pickle.dump(model, f)
|
| 53 |
+
|
| 54 |
+
evaluation('LinearSVC.pkl', self.X_test,self.y_test)
|
| 55 |
+
print("Training Completed")
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def SVC(self, **kwargs):
|
| 59 |
+
from sklearn.svm import SVC
|
| 60 |
+
model = SVC(**kwargs)
|
| 61 |
+
model.fit(self.X_train, self.y_train)
|
| 62 |
+
save_path = os.path.join("models", 'SVC.pkl')
|
| 63 |
+
with open(save_path, 'wb') as f:
|
| 64 |
+
pickle.dump(model, f)
|
| 65 |
+
|
| 66 |
+
evaluation('SVC.pkl', self.X_test,self.y_test)
|
| 67 |
+
print("Training Completed")
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def RandomForestClassifier(self, **kwargs):
|
| 71 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 72 |
+
model = RandomForestClassifier(**kwargs)
|
| 73 |
+
model.fit(self.X_train, self.y_train)
|
| 74 |
+
save_path = os.path.join("models", 'RandomForestClassifier.pkl')
|
| 75 |
+
with open(save_path, 'wb') as f:
|
| 76 |
+
pickle.dump(model, f)
|
| 77 |
+
|
| 78 |
+
evaluation('RandomForestClassifier.pkl', self.X_test,self.y_test)
|
| 79 |
+
print("Training Completed")
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def MultinomialNB(self, **kwargs):
|
| 83 |
+
from sklearn.naive_bayes import MultinomialNB
|
| 84 |
+
model = MultinomialNB(**kwargs)
|
| 85 |
+
model.fit(self.X_train, self.y_train)
|
| 86 |
+
save_path = os.path.join("models", 'MultinomialNB.pkl')
|
| 87 |
+
with open(save_path, 'wb') as f:
|
| 88 |
+
pickle.dump(model, f)
|
| 89 |
+
|
| 90 |
+
evaluation('MultinomialNB.pkl', self.X_test,self.y_test)
|
| 91 |
+
print("Training Completed")
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def GaussianNB(self, **kwargs):
|
| 95 |
+
from sklearn.naive_bayes import GaussianNB
|
| 96 |
+
model = GaussianNB(**kwargs)
|
| 97 |
+
model.fit(self.X_train, self.y_train)
|
| 98 |
+
save_path = os.path.join("models", 'GaussianNB.pkl')
|
| 99 |
+
with open(save_path, 'wb') as f:
|
| 100 |
+
pickle.dump(model, f)
|
| 101 |
+
|
| 102 |
+
evaluation('GaussianNB.pkl', self.X_test,self.y_test)
|
| 103 |
+
print("Training Completed")
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
NoCodeTextClassifier/preprocessing.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from sklearn.preprocessing import LabelEncoder
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import pickle
|
| 5 |
+
import re
|
| 6 |
+
import nltk
|
| 7 |
+
from nltk.corpus import stopwords
|
| 8 |
+
from nltk.stem import WordNetLemmatizer
|
| 9 |
+
import string
|
| 10 |
+
import os
|
| 11 |
+
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
|
| 12 |
+
from NoCodeTextClassifier import utils
|
| 13 |
+
import numpy as np
|
| 14 |
+
import ssl
|
| 15 |
+
|
| 16 |
+
# Fix SSL certificate issues for NLTK downloads
|
| 17 |
+
try:
|
| 18 |
+
_create_unverified_https_context = ssl._create_unverified_context
|
| 19 |
+
except AttributeError:
|
| 20 |
+
pass
|
| 21 |
+
else:
|
| 22 |
+
ssl._create_default_https_context = _create_unverified_https_context
|
| 23 |
+
|
| 24 |
+
# Download NLTK data with error handling
|
| 25 |
+
def download_nltk_data():
|
| 26 |
+
try:
|
| 27 |
+
nltk.data.find('corpora/stopwords')
|
| 28 |
+
except LookupError:
|
| 29 |
+
nltk.download('stopwords', quiet=True)
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
nltk.data.find('corpora/wordnet')
|
| 33 |
+
except LookupError:
|
| 34 |
+
nltk.download('wordnet', quiet=True)
|
| 35 |
+
nltk.download('omw-1.4', quiet=True) # Required for newer NLTK versions
|
| 36 |
+
|
| 37 |
+
# Download required NLTK data
|
| 38 |
+
download_nltk_data()
|
| 39 |
+
|
| 40 |
+
class TextCleaner:
|
| 41 |
+
'''Class for cleaning Text'''
|
| 42 |
+
def __init__(self, currency_symbols = r'[\$\£\€\¥\₹\¢\₽\₩\₪]', stop_words=None, lemmatizer=None):
|
| 43 |
+
self.currency_symbols = currency_symbols
|
| 44 |
+
|
| 45 |
+
if stop_words is None:
|
| 46 |
+
try:
|
| 47 |
+
self.stop_words = set(stopwords.words('english'))
|
| 48 |
+
except LookupError:
|
| 49 |
+
nltk.download('stopwords', quiet=True)
|
| 50 |
+
self.stop_words = set(stopwords.words('english'))
|
| 51 |
+
else:
|
| 52 |
+
self.stop_words = stop_words
|
| 53 |
+
|
| 54 |
+
if lemmatizer is None:
|
| 55 |
+
try:
|
| 56 |
+
self.lemmatizer = WordNetLemmatizer()
|
| 57 |
+
# Test the lemmatizer to ensure it works
|
| 58 |
+
test_word = self.lemmatizer.lemmatize('testing')
|
| 59 |
+
except (AttributeError, LookupError) as e:
|
| 60 |
+
print(f"WordNet lemmatizer initialization failed: {e}")
|
| 61 |
+
nltk.download('wordnet', quiet=True)
|
| 62 |
+
nltk.download('omw-1.4', quiet=True)
|
| 63 |
+
self.lemmatizer = WordNetLemmatizer()
|
| 64 |
+
else:
|
| 65 |
+
self.lemmatizer = lemmatizer
|
| 66 |
+
|
| 67 |
+
def remove_punctuation(self,text):
|
| 68 |
+
return text.translate(str.maketrans('', '', string.punctuation))
|
| 69 |
+
|
| 70 |
+
# Functions for cleaning text
|
| 71 |
+
def clean_text(self, text):
|
| 72 |
+
'''
|
| 73 |
+
Clean the text by removing punctuations, html tag, underscore,
|
| 74 |
+
whitespaces, numbers, stopwords.
|
| 75 |
+
Lemmatize the words in root format.
|
| 76 |
+
'''
|
| 77 |
+
# Handle non-string inputs
|
| 78 |
+
if not isinstance(text, str):
|
| 79 |
+
text = str(text) if text is not None else ""
|
| 80 |
+
|
| 81 |
+
if not text.strip():
|
| 82 |
+
return ""
|
| 83 |
+
|
| 84 |
+
try:
|
| 85 |
+
text = text.lower()
|
| 86 |
+
text = re.sub(self.currency_symbols, 'currency', text)
|
| 87 |
+
|
| 88 |
+
'''remove any kind of emojis in the text'''
|
| 89 |
+
emoji_pattern = re.compile("["
|
| 90 |
+
u"\U0001F600-\U0001F64F" # emoticons
|
| 91 |
+
u"\U0001F300-\U0001F5FF" # symbols & pictographs
|
| 92 |
+
u"\U0001F680-\U0001F6FF" # transport & map symbols
|
| 93 |
+
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
|
| 94 |
+
u"\U00002702-\U000027B0"
|
| 95 |
+
u"\U000024C2-\U0001F251"
|
| 96 |
+
"]+", flags=re.UNICODE)
|
| 97 |
+
text = emoji_pattern.sub(r'', text)
|
| 98 |
+
text = self.remove_punctuation(text)
|
| 99 |
+
text = re.compile('<.*?>').sub('', text)
|
| 100 |
+
text = text.replace('_', '')
|
| 101 |
+
text = re.sub(r'[^\w\s]', '', text)
|
| 102 |
+
text = re.sub(r'\d', ' ', text)
|
| 103 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 104 |
+
text = ' '.join(word for word in text.split() if word not in self.stop_words)
|
| 105 |
+
|
| 106 |
+
# Lemmatization with error handling
|
| 107 |
+
try:
|
| 108 |
+
text = ' '.join(self.lemmatizer.lemmatize(word) for word in text.split())
|
| 109 |
+
except (AttributeError, LookupError) as e:
|
| 110 |
+
print(f"Lemmatization failed for text: {e}")
|
| 111 |
+
# Continue without lemmatization
|
| 112 |
+
pass
|
| 113 |
+
|
| 114 |
+
return str(text)
|
| 115 |
+
|
| 116 |
+
except Exception as e:
|
| 117 |
+
print(f"Error cleaning text: {e}")
|
| 118 |
+
return str(text)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class process:
|
| 122 |
+
def __init__(self, data_path:str, text_feature:str,target_feature:str):
|
| 123 |
+
self.data_path = Path(data_path)
|
| 124 |
+
self.text_feature = text_feature
|
| 125 |
+
self.target_feature = target_feature
|
| 126 |
+
|
| 127 |
+
def _read_data(self):
|
| 128 |
+
df = pd.read_csv(self.data_path)
|
| 129 |
+
return df
|
| 130 |
+
|
| 131 |
+
def encoder_class(self, df):
|
| 132 |
+
encoder = LabelEncoder()
|
| 133 |
+
target = encoder.fit_transform(df[self.target_feature])
|
| 134 |
+
os.makedirs("artifacts",exist_ok=True)
|
| 135 |
+
save_path = os.path.join("artifacts", 'encoder.pkl')
|
| 136 |
+
with open(save_path, 'wb') as f:
|
| 137 |
+
pickle.dump(encoder, f)
|
| 138 |
+
|
| 139 |
+
return target
|
| 140 |
+
|
| 141 |
+
def clean_text(self, df):
|
| 142 |
+
text_cleaner = TextCleaner()
|
| 143 |
+
return df[self.text_feature].apply(lambda x: text_cleaner.clean_text(x))
|
| 144 |
+
|
| 145 |
+
def processing(self):
|
| 146 |
+
df = self._read_data()
|
| 147 |
+
df['labeled_target'] = self.encoder_class(df)
|
| 148 |
+
print("started Cleaning")
|
| 149 |
+
df['clean_text'] = self.clean_text(df)
|
| 150 |
+
return df
|
| 151 |
+
|
| 152 |
+
@staticmethod
|
| 153 |
+
def split_data( X, y):
|
| 154 |
+
from sklearn.model_selection import train_test_split
|
| 155 |
+
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=42)
|
| 156 |
+
return X_train, X_test, y_train, y_test
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
class Vectorization:
|
| 160 |
+
def __init__(self, dataframe=np.zeros((5,5)), text_feature='text_feature'):
|
| 161 |
+
self.df = dataframe
|
| 162 |
+
self.text = text_feature
|
| 163 |
+
|
| 164 |
+
# Define the directory where you want to save the vectorizer
|
| 165 |
+
self.vectorizer_dir = "vectorizers"
|
| 166 |
+
|
| 167 |
+
def TfidfVectorizer(self, eval=False, string="text", **kwargs):
|
| 168 |
+
# Step 1: Fit the Vectorizer on the Training Data
|
| 169 |
+
vectorizer = TfidfVectorizer(**kwargs)
|
| 170 |
+
if eval==True:
|
| 171 |
+
tfidf_vectorizer = utils.load_artifacts("vectorizers","tfidf_vectorizer.pkl")
|
| 172 |
+
return tfidf_vectorizer.transform([string])
|
| 173 |
+
|
| 174 |
+
tfidf_vectorizer = vectorizer.fit_transform(self.df[self.text])
|
| 175 |
+
print(tfidf_vectorizer.toarray().shape)
|
| 176 |
+
os.makedirs(self.vectorizer_dir,exist_ok=True)
|
| 177 |
+
save_path = os.path.join(self.vectorizer_dir, 'tfidf_vectorizer.pkl')
|
| 178 |
+
with open(save_path, 'wb') as f:
|
| 179 |
+
pickle.dump(vectorizer, f)
|
| 180 |
+
|
| 181 |
+
return tfidf_vectorizer
|
| 182 |
+
|
| 183 |
+
def CountVectorizer(self, eval=False, string="text",**kwargs):
|
| 184 |
+
# Step 1: Fit the Vectorizer on the Training Data
|
| 185 |
+
vectorizer = CountVectorizer(**kwargs)
|
| 186 |
+
if eval==True:
|
| 187 |
+
tfidf_vectorizer = utils.load_artifacts("vectorizers","count_vectorizer.pkl")
|
| 188 |
+
return tfidf_vectorizer.transform([string])
|
| 189 |
+
count_vectorizer = vectorizer.fit_transform(self.df[self.text])
|
| 190 |
+
print(count_vectorizer.toarray().shape)
|
| 191 |
+
os.makedirs(self.vectorizer_dir,exist_ok=True)
|
| 192 |
+
save_path = os.path.join(self.vectorizer_dir, 'count_vectorizer.pkl')
|
| 193 |
+
with open(save_path, 'wb') as f:
|
| 194 |
+
pickle.dump(vectorizer, f)
|
| 195 |
+
|
| 196 |
+
return count_vectorizer
|
NoCodeTextClassifier/utils.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 2 |
+
import pickle
|
| 3 |
+
import os
|
| 4 |
+
import streamlit as st
|
| 5 |
+
|
| 6 |
+
def load_model(model_name):
|
| 7 |
+
with open(os.path.join('models',model_name), 'rb') as f:
|
| 8 |
+
model = pickle.load(f)
|
| 9 |
+
return model
|
| 10 |
+
|
| 11 |
+
def load_artifacts(folder_name, file_name):
|
| 12 |
+
with open(os.path.join(folder_name,file_name), 'rb') as f:
|
| 13 |
+
model = pickle.load(f)
|
| 14 |
+
return model
|
| 15 |
+
|
| 16 |
+
def prediction(model, X_test):
|
| 17 |
+
model = load_model(model)
|
| 18 |
+
y_pred = model.predict(X_test)
|
| 19 |
+
return y_pred
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def evaluation(model, X_test, y_test):
|
| 23 |
+
y_pred = prediction(model, X_test)
|
| 24 |
+
accuracy = accuracy_score(y_test, y_pred)
|
| 25 |
+
class_report = classification_report(y_test, y_pred)
|
| 26 |
+
conf_matrix = confusion_matrix(y_test, y_pred)
|
| 27 |
+
model_name = model.split(".")[0]
|
| 28 |
+
print(f"Accuracy of {model_name}: {accuracy}\n")
|
| 29 |
+
print(f"Classification Report of {model_name} : \n{class_report}\n")
|
| 30 |
+
print(f"Confusion Matrix of {model_name} : \n{conf_matrix}")
|
| 31 |
+
|
| 32 |
+
st.markdown(f"Accuracy of **{model_name}**: **{accuracy*100}%**\n")
|
| 33 |
+
# st.markdown(f"\nClassification Report of **{model_name}** :\n")
|
| 34 |
+
# st.write(class_report)
|
| 35 |
+
st.markdown(f"\nConfusion Matrix of **{model_name}** : \n")
|
| 36 |
+
st.write(conf_matrix)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|