Spaces:
Sleeping
Sleeping
| import os | |
| import httpx | |
| from config import Config | |
| def load_llm(api_key=None): | |
| """ | |
| Load the LLM client for generating responses | |
| Args: | |
| api_key (str): API key for the LLM service | |
| Returns: | |
| function: Async function to fetch responses from the model | |
| """ | |
| if not api_key: | |
| api_key = os.getenv("LLAMA_API_KEY") | |
| if not api_key: | |
| raise ValueError("API key is required. Set LLAMA_API_KEY in the environment or pass it directly.") | |
| # Groq API endpoint for LLaMA 3 70B | |
| endpoint = "https://api.groq.com/openai/v1/chat/completions" | |
| model_name = "llama3-70b-8192" | |
| async def fetch_model_response(query: str): | |
| headers = { | |
| "Authorization": f"Bearer {api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| payload = { | |
| "model": model_name, | |
| "messages": [{"role": "user", "content": query}], | |
| "temperature": 0.7, | |
| "max_tokens": 2000 | |
| } | |
| try: | |
| async with httpx.AsyncClient() as client: | |
| response = await client.post(endpoint, json=payload, headers=headers) | |
| if response.status_code == 200: | |
| return response.json() | |
| else: | |
| error_message = f"API Error: {response.status_code} - {response.text}" | |
| print(error_message) | |
| return {"error": "Failed to fetch response from model", "details": error_message} | |
| except Exception as e: | |
| print(f"Exception in fetch_model_response: {str(e)}") | |
| return {"error": "Exception calling LLM API", "details": str(e)} | |
| return fetch_model_response |