File size: 12,333 Bytes
534218d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Example Usage - Pneumonia Consolidation Segmentation

This notebook demonstrates how to use the pneumonia consolidation segmentation tools.

## Setup

```python
import sys
import cv2
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt

# Add parent directory to path
sys.path.append('..')

# Import our modules
from preprocessing_consolidation import enhance_consolidation
from dice_calculator_app import (
    calculate_dice_coefficient, 
    calculate_iou,
    calculate_precision_recall,
    create_overlay_visualization
)
```

## 1. Preprocessing Images

### Enhance a single image to see consolidation better

```python
# Path to your chest X-ray
input_image = "../data/Pacientes/7035909/7035909_20240326.jpg"
output_image = "../dice/enhanced_images/7035909_enhanced.jpg"

# Enhance the image
enhanced = enhance_consolidation(input_image, output_image)

# Visualize comparison
fig, axes = plt.subplots(1, 2, figsize=(12, 6))

original = cv2.imread(input_image, cv2.IMREAD_GRAYSCALE)
axes[0].imshow(original, cmap='gray')
axes[0].set_title('Original X-ray')
axes[0].axis('off')

axes[1].imshow(enhanced, cmap='gray')
axes[1].set_title('Enhanced (CLAHE + Sharpening)')
axes[1].axis('off')

plt.tight_layout()
plt.show()
```

### Batch process multiple images

```python
from preprocessing_consolidation import batch_enhance_consolidation

# Process all patient images
input_dir = "../data/Pacientes/"
output_dir = "../dice/enhanced_images/"

batch_enhance_consolidation(input_dir, output_dir, image_extension='.jpg')
```

## 2. Create Sample Masks for Testing

Let's create some sample masks to demonstrate the Dice calculation.

```python
def create_sample_masks(image_path):
    """Create sample ground truth and prediction masks for demo."""
    
    # Load image
    img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
    h, w = img.shape
    
    # Create ground truth mask (simulated consolidation in lower right lung)
    ground_truth = np.zeros((h, w), dtype=np.uint8)
    center_y, center_x = int(h * 0.6), int(w * 0.7)
    
    # Create irregular shape for consolidation
    for i in range(h):
        for j in range(w):
            dist = np.sqrt((i - center_y)**2 + (j - center_x)**2)
            noise = np.random.randn() * 20
            if dist + noise < 80:
                ground_truth[i, j] = 255
    
    # Create predicted mask (similar but slightly different)
    prediction = np.zeros((h, w), dtype=np.uint8)
    center_y_pred = int(h * 0.58)  # Slightly shifted
    center_x_pred = int(w * 0.72)
    
    for i in range(h):
        for j in range(w):
            dist = np.sqrt((i - center_y_pred)**2 + (j - center_x_pred)**2)
            noise = np.random.randn() * 25
            if dist + noise < 75:  # Slightly smaller
                prediction[i, j] = 255
    
    return ground_truth, prediction

# Create sample masks
image_path = "../data/Pacientes/7035909/7035909_20240326.jpg"
gt_mask, pred_mask = create_sample_masks(image_path)

# Save masks
cv2.imwrite("../dice/annotations/ground_truth/sample_gt.png", gt_mask)
cv2.imwrite("../dice/annotations/predictions/sample_pred.png", pred_mask)

print("Sample masks created!")
```

## 3. Calculate Dice Coefficient

```python
# Load masks
ground_truth = cv2.imread("../dice/annotations/ground_truth/sample_gt.png", cv2.IMREAD_GRAYSCALE)
prediction = cv2.imread("../dice/annotations/predictions/sample_pred.png", cv2.IMREAD_GRAYSCALE)

# Calculate metrics
dice = calculate_dice_coefficient(ground_truth, prediction)
iou = calculate_iou(ground_truth, prediction)
precision, recall = calculate_precision_recall(ground_truth, prediction)
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0

print("Segmentation Metrics:")
print(f"  Dice Coefficient: {dice:.4f}")
print(f"  IoU (Jaccard):    {iou:.4f}")
print(f"  Precision:        {precision:.4f}")
print(f"  Recall:           {recall:.4f}")
print(f"  F1 Score:         {f1:.4f}")

# Interpretation
if dice > 0.85:
    quality = "Excellent ✓"
elif dice > 0.70:
    quality = "Good (acceptable for fuzzy borders)"
else:
    quality = "Needs review"
    
print(f"\nQuality Assessment: {quality}")
```

## 4. Visualize Results

```python
# Load original image
original = cv2.imread(image_path)

# Create overlay visualization
overlay = create_overlay_visualization(original, ground_truth, prediction, alpha=0.5)

# Display all views
fig, axes = plt.subplots(2, 2, figsize=(12, 12))

axes[0, 0].imshow(cv2.cvtColor(original, cv2.COLOR_BGR2RGB))
axes[0, 0].set_title('Original X-ray')
axes[0, 0].axis('off')

axes[0, 1].imshow(ground_truth, cmap='Greens')
axes[0, 1].set_title('Ground Truth Mask')
axes[0, 1].axis('off')

axes[1, 0].imshow(prediction, cmap='Reds')
axes[1, 0].set_title('Predicted Mask')
axes[1, 0].axis('off')

axes[1, 1].imshow(overlay)
axes[1, 1].set_title(f'Overlay (Dice: {dice:.3f})')
axes[1, 1].axis('off')

# Add legend
legend_elements = [
    plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='g', markersize=10, label='Ground Truth'),
    plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='r', markersize=10, label='Prediction'),
    plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='y', markersize=10, label='Overlap')
]
axes[1, 1].legend(handles=legend_elements, loc='upper right')

plt.tight_layout()
plt.savefig('../dice/results/example_visualization.png', dpi=150, bbox_inches='tight')
plt.show()

print("Visualization saved to: dice/results/example_visualization.png")
```

## 5. Batch Calculate Dice Scores

Process multiple mask pairs and generate report.

```python
import pandas as pd
from pathlib import Path

def batch_calculate_dice(gt_dir, pred_dir, results_file):
    """Calculate Dice for all mask pairs in directories."""
    
    gt_dir = Path(gt_dir)
    pred_dir = Path(pred_dir)
    
    results = []
    
    # Find all ground truth masks
    gt_masks = list(gt_dir.glob("*.png")) + list(gt_dir.glob("*.jpg"))
    
    for gt_path in gt_masks:
        # Find corresponding prediction
        pred_path = pred_dir / gt_path.name
        
        if not pred_path.exists():
            print(f"Warning: No prediction found for {gt_path.name}")
            continue
        
        # Load masks
        gt = cv2.imread(str(gt_path), cv2.IMREAD_GRAYSCALE)
        pred = cv2.imread(str(pred_path), cv2.IMREAD_GRAYSCALE)
        
        # Calculate metrics
        dice = calculate_dice_coefficient(gt, pred)
        iou = calculate_iou(gt, pred)
        precision, recall = calculate_precision_recall(gt, pred)
        f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
        
        results.append({
            'Image': gt_path.name,
            'Dice': dice,
            'IoU': iou,
            'Precision': precision,
            'Recall': recall,
            'F1': f1
        })
        
        print(f"Processed: {gt_path.name} - Dice: {dice:.4f}")
    
    # Create DataFrame
    df = pd.DataFrame(results)
    
    # Calculate summary statistics
    summary = {
        'Metric': ['Mean', 'Std', 'Min', 'Max', 'Median'],
        'Dice': [
            df['Dice'].mean(),
            df['Dice'].std(),
            df['Dice'].min(),
            df['Dice'].max(),
            df['Dice'].median()
        ]
    }
    
    summary_df = pd.DataFrame(summary)
    
    # Save results
    with pd.ExcelWriter(results_file, engine='openpyxl') as writer:
        df.to_excel(writer, sheet_name='Individual Results', index=False)
        summary_df.to_excel(writer, sheet_name='Summary', index=False)
    
    print(f"\nResults saved to: {results_file}")
    print("\nSummary Statistics:")
    print(summary_df.to_string(index=False))
    
    return df, summary_df

# Run batch processing
gt_directory = "../dice/annotations/ground_truth/"
pred_directory = "../dice/annotations/predictions/"
results_excel = "../dice/results/dice_scores_report.xlsx"

df_results, df_summary = batch_calculate_dice(gt_directory, pred_directory, results_excel)
```

## 6. Working with Real Patient Data

Example of processing actual patient X-rays from your dataset.

```python
# Get list of patient directories
patients_dir = Path("../data/Pacientes/")
patient_folders = [d for d in patients_dir.iterdir() if d.is_dir() and d.name.isdigit()]

print(f"Found {len(patient_folders)} patient folders")

# Process first 5 patients as example
for patient_dir in patient_folders[:5]:
    patient_id = patient_dir.name
    print(f"\nProcessing Patient: {patient_id}")
    
    # Find X-ray image
    images = list(patient_dir.glob("*.jpg"))
    
    if images:
        xray_path = images[0]
        print(f"  X-ray: {xray_path.name}")
        
        # Enhance image
        output_path = f"../dice/enhanced_images/{patient_id}_enhanced.jpg"
        enhanced = enhance_consolidation(str(xray_path), output_path)
        
        print(f"  Enhanced image saved: {output_path}")
        
        # Here you would:
        # 1. Load or create annotations
        # 2. Calculate Dice if annotations exist
        # 3. Generate reports
    else:
        print(f"  No images found")
```

## 7. Quality Control Report

Generate a comprehensive quality control report.

```python
def generate_qc_report(results_df, output_path):
    """Generate quality control report with visualizations."""
    
    fig, axes = plt.subplots(2, 2, figsize=(14, 10))
    
    # 1. Dice score distribution
    axes[0, 0].hist(results_df['Dice'], bins=20, color='steelblue', edgecolor='black')
    axes[0, 0].axvline(0.7, color='orange', linestyle='--', label='Good threshold')
    axes[0, 0].axvline(0.85, color='green', linestyle='--', label='Excellent threshold')
    axes[0, 0].set_xlabel('Dice Coefficient')
    axes[0, 0].set_ylabel('Frequency')
    axes[0, 0].set_title('Distribution of Dice Scores')
    axes[0, 0].legend()
    
    # 2. Dice vs IoU scatter
    axes[0, 1].scatter(results_df['Dice'], results_df['IoU'], alpha=0.6)
    axes[0, 1].plot([0, 1], [0, 1], 'r--', label='Perfect correlation')
    axes[0, 1].set_xlabel('Dice Coefficient')
    axes[0, 1].set_ylabel('IoU')
    axes[0, 1].set_title('Dice vs IoU Correlation')
    axes[0, 1].legend()
    
    # 3. Precision-Recall scatter
    axes[1, 0].scatter(results_df['Recall'], results_df['Precision'], 
                       c=results_df['Dice'], cmap='viridis', alpha=0.6)
    axes[1, 0].set_xlabel('Recall')
    axes[1, 0].set_ylabel('Precision')
    axes[1, 0].set_title('Precision vs Recall (colored by Dice)')
    plt.colorbar(axes[1, 0].collections[0], ax=axes[1, 0], label='Dice')
    
    # 4. Quality categories
    categories = pd.cut(results_df['Dice'], 
                       bins=[0, 0.7, 0.85, 1.0],
                       labels=['Needs Review', 'Good', 'Excellent'])
    category_counts = categories.value_counts()
    
    axes[1, 1].bar(range(len(category_counts)), category_counts.values, 
                   color=['red', 'orange', 'green'])
    axes[1, 1].set_xticks(range(len(category_counts)))
    axes[1, 1].set_xticklabels(category_counts.index, rotation=45)
    axes[1, 1].set_ylabel('Count')
    axes[1, 1].set_title('Segmentation Quality Distribution')
    
    plt.tight_layout()
    plt.savefig(output_path, dpi=150, bbox_inches='tight')
    plt.show()
    
    print(f"Quality control report saved: {output_path}")
    
    # Print summary
    print("\n=== Quality Control Summary ===")
    print(f"Total cases: {len(results_df)}")
    print(f"\nQuality breakdown:")
    for cat, count in category_counts.items():
        pct = (count / len(results_df)) * 100
        print(f"  {cat}: {count} ({pct:.1f}%)")

# Generate report if we have results
if len(df_results) > 0:
    generate_qc_report(df_results, '../dice/results/quality_control_report.png')
```

## Next Steps

1. **Annotate Real Data**: Use CVAT or Label Studio to create ground truth masks
2. **Train ML Model**: Use annotated data to train segmentation model
3. **Validate**: Use this toolkit to validate model predictions
4. **Iterate**: Refine annotations and model based on Dice scores

## Resources

- [CVAT Installation](https://opencv.github.io/cvat/docs/)
- [SAM Download](https://github.com/facebookresearch/segment-anything)
- [Medical Image Segmentation Best Practices](https://arxiv.org/abs/1904.03882)