File size: 12,333 Bytes
534218d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
# Example Usage - Pneumonia Consolidation Segmentation
This notebook demonstrates how to use the pneumonia consolidation segmentation tools.
## Setup
```python
import sys
import cv2
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
# Add parent directory to path
sys.path.append('..')
# Import our modules
from preprocessing_consolidation import enhance_consolidation
from dice_calculator_app import (
calculate_dice_coefficient,
calculate_iou,
calculate_precision_recall,
create_overlay_visualization
)
```
## 1. Preprocessing Images
### Enhance a single image to see consolidation better
```python
# Path to your chest X-ray
input_image = "../data/Pacientes/7035909/7035909_20240326.jpg"
output_image = "../dice/enhanced_images/7035909_enhanced.jpg"
# Enhance the image
enhanced = enhance_consolidation(input_image, output_image)
# Visualize comparison
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
original = cv2.imread(input_image, cv2.IMREAD_GRAYSCALE)
axes[0].imshow(original, cmap='gray')
axes[0].set_title('Original X-ray')
axes[0].axis('off')
axes[1].imshow(enhanced, cmap='gray')
axes[1].set_title('Enhanced (CLAHE + Sharpening)')
axes[1].axis('off')
plt.tight_layout()
plt.show()
```
### Batch process multiple images
```python
from preprocessing_consolidation import batch_enhance_consolidation
# Process all patient images
input_dir = "../data/Pacientes/"
output_dir = "../dice/enhanced_images/"
batch_enhance_consolidation(input_dir, output_dir, image_extension='.jpg')
```
## 2. Create Sample Masks for Testing
Let's create some sample masks to demonstrate the Dice calculation.
```python
def create_sample_masks(image_path):
"""Create sample ground truth and prediction masks for demo."""
# Load image
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
h, w = img.shape
# Create ground truth mask (simulated consolidation in lower right lung)
ground_truth = np.zeros((h, w), dtype=np.uint8)
center_y, center_x = int(h * 0.6), int(w * 0.7)
# Create irregular shape for consolidation
for i in range(h):
for j in range(w):
dist = np.sqrt((i - center_y)**2 + (j - center_x)**2)
noise = np.random.randn() * 20
if dist + noise < 80:
ground_truth[i, j] = 255
# Create predicted mask (similar but slightly different)
prediction = np.zeros((h, w), dtype=np.uint8)
center_y_pred = int(h * 0.58) # Slightly shifted
center_x_pred = int(w * 0.72)
for i in range(h):
for j in range(w):
dist = np.sqrt((i - center_y_pred)**2 + (j - center_x_pred)**2)
noise = np.random.randn() * 25
if dist + noise < 75: # Slightly smaller
prediction[i, j] = 255
return ground_truth, prediction
# Create sample masks
image_path = "../data/Pacientes/7035909/7035909_20240326.jpg"
gt_mask, pred_mask = create_sample_masks(image_path)
# Save masks
cv2.imwrite("../dice/annotations/ground_truth/sample_gt.png", gt_mask)
cv2.imwrite("../dice/annotations/predictions/sample_pred.png", pred_mask)
print("Sample masks created!")
```
## 3. Calculate Dice Coefficient
```python
# Load masks
ground_truth = cv2.imread("../dice/annotations/ground_truth/sample_gt.png", cv2.IMREAD_GRAYSCALE)
prediction = cv2.imread("../dice/annotations/predictions/sample_pred.png", cv2.IMREAD_GRAYSCALE)
# Calculate metrics
dice = calculate_dice_coefficient(ground_truth, prediction)
iou = calculate_iou(ground_truth, prediction)
precision, recall = calculate_precision_recall(ground_truth, prediction)
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
print("Segmentation Metrics:")
print(f" Dice Coefficient: {dice:.4f}")
print(f" IoU (Jaccard): {iou:.4f}")
print(f" Precision: {precision:.4f}")
print(f" Recall: {recall:.4f}")
print(f" F1 Score: {f1:.4f}")
# Interpretation
if dice > 0.85:
quality = "Excellent ✓"
elif dice > 0.70:
quality = "Good (acceptable for fuzzy borders)"
else:
quality = "Needs review"
print(f"\nQuality Assessment: {quality}")
```
## 4. Visualize Results
```python
# Load original image
original = cv2.imread(image_path)
# Create overlay visualization
overlay = create_overlay_visualization(original, ground_truth, prediction, alpha=0.5)
# Display all views
fig, axes = plt.subplots(2, 2, figsize=(12, 12))
axes[0, 0].imshow(cv2.cvtColor(original, cv2.COLOR_BGR2RGB))
axes[0, 0].set_title('Original X-ray')
axes[0, 0].axis('off')
axes[0, 1].imshow(ground_truth, cmap='Greens')
axes[0, 1].set_title('Ground Truth Mask')
axes[0, 1].axis('off')
axes[1, 0].imshow(prediction, cmap='Reds')
axes[1, 0].set_title('Predicted Mask')
axes[1, 0].axis('off')
axes[1, 1].imshow(overlay)
axes[1, 1].set_title(f'Overlay (Dice: {dice:.3f})')
axes[1, 1].axis('off')
# Add legend
legend_elements = [
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='g', markersize=10, label='Ground Truth'),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='r', markersize=10, label='Prediction'),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor='y', markersize=10, label='Overlap')
]
axes[1, 1].legend(handles=legend_elements, loc='upper right')
plt.tight_layout()
plt.savefig('../dice/results/example_visualization.png', dpi=150, bbox_inches='tight')
plt.show()
print("Visualization saved to: dice/results/example_visualization.png")
```
## 5. Batch Calculate Dice Scores
Process multiple mask pairs and generate report.
```python
import pandas as pd
from pathlib import Path
def batch_calculate_dice(gt_dir, pred_dir, results_file):
"""Calculate Dice for all mask pairs in directories."""
gt_dir = Path(gt_dir)
pred_dir = Path(pred_dir)
results = []
# Find all ground truth masks
gt_masks = list(gt_dir.glob("*.png")) + list(gt_dir.glob("*.jpg"))
for gt_path in gt_masks:
# Find corresponding prediction
pred_path = pred_dir / gt_path.name
if not pred_path.exists():
print(f"Warning: No prediction found for {gt_path.name}")
continue
# Load masks
gt = cv2.imread(str(gt_path), cv2.IMREAD_GRAYSCALE)
pred = cv2.imread(str(pred_path), cv2.IMREAD_GRAYSCALE)
# Calculate metrics
dice = calculate_dice_coefficient(gt, pred)
iou = calculate_iou(gt, pred)
precision, recall = calculate_precision_recall(gt, pred)
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
results.append({
'Image': gt_path.name,
'Dice': dice,
'IoU': iou,
'Precision': precision,
'Recall': recall,
'F1': f1
})
print(f"Processed: {gt_path.name} - Dice: {dice:.4f}")
# Create DataFrame
df = pd.DataFrame(results)
# Calculate summary statistics
summary = {
'Metric': ['Mean', 'Std', 'Min', 'Max', 'Median'],
'Dice': [
df['Dice'].mean(),
df['Dice'].std(),
df['Dice'].min(),
df['Dice'].max(),
df['Dice'].median()
]
}
summary_df = pd.DataFrame(summary)
# Save results
with pd.ExcelWriter(results_file, engine='openpyxl') as writer:
df.to_excel(writer, sheet_name='Individual Results', index=False)
summary_df.to_excel(writer, sheet_name='Summary', index=False)
print(f"\nResults saved to: {results_file}")
print("\nSummary Statistics:")
print(summary_df.to_string(index=False))
return df, summary_df
# Run batch processing
gt_directory = "../dice/annotations/ground_truth/"
pred_directory = "../dice/annotations/predictions/"
results_excel = "../dice/results/dice_scores_report.xlsx"
df_results, df_summary = batch_calculate_dice(gt_directory, pred_directory, results_excel)
```
## 6. Working with Real Patient Data
Example of processing actual patient X-rays from your dataset.
```python
# Get list of patient directories
patients_dir = Path("../data/Pacientes/")
patient_folders = [d for d in patients_dir.iterdir() if d.is_dir() and d.name.isdigit()]
print(f"Found {len(patient_folders)} patient folders")
# Process first 5 patients as example
for patient_dir in patient_folders[:5]:
patient_id = patient_dir.name
print(f"\nProcessing Patient: {patient_id}")
# Find X-ray image
images = list(patient_dir.glob("*.jpg"))
if images:
xray_path = images[0]
print(f" X-ray: {xray_path.name}")
# Enhance image
output_path = f"../dice/enhanced_images/{patient_id}_enhanced.jpg"
enhanced = enhance_consolidation(str(xray_path), output_path)
print(f" Enhanced image saved: {output_path}")
# Here you would:
# 1. Load or create annotations
# 2. Calculate Dice if annotations exist
# 3. Generate reports
else:
print(f" No images found")
```
## 7. Quality Control Report
Generate a comprehensive quality control report.
```python
def generate_qc_report(results_df, output_path):
"""Generate quality control report with visualizations."""
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
# 1. Dice score distribution
axes[0, 0].hist(results_df['Dice'], bins=20, color='steelblue', edgecolor='black')
axes[0, 0].axvline(0.7, color='orange', linestyle='--', label='Good threshold')
axes[0, 0].axvline(0.85, color='green', linestyle='--', label='Excellent threshold')
axes[0, 0].set_xlabel('Dice Coefficient')
axes[0, 0].set_ylabel('Frequency')
axes[0, 0].set_title('Distribution of Dice Scores')
axes[0, 0].legend()
# 2. Dice vs IoU scatter
axes[0, 1].scatter(results_df['Dice'], results_df['IoU'], alpha=0.6)
axes[0, 1].plot([0, 1], [0, 1], 'r--', label='Perfect correlation')
axes[0, 1].set_xlabel('Dice Coefficient')
axes[0, 1].set_ylabel('IoU')
axes[0, 1].set_title('Dice vs IoU Correlation')
axes[0, 1].legend()
# 3. Precision-Recall scatter
axes[1, 0].scatter(results_df['Recall'], results_df['Precision'],
c=results_df['Dice'], cmap='viridis', alpha=0.6)
axes[1, 0].set_xlabel('Recall')
axes[1, 0].set_ylabel('Precision')
axes[1, 0].set_title('Precision vs Recall (colored by Dice)')
plt.colorbar(axes[1, 0].collections[0], ax=axes[1, 0], label='Dice')
# 4. Quality categories
categories = pd.cut(results_df['Dice'],
bins=[0, 0.7, 0.85, 1.0],
labels=['Needs Review', 'Good', 'Excellent'])
category_counts = categories.value_counts()
axes[1, 1].bar(range(len(category_counts)), category_counts.values,
color=['red', 'orange', 'green'])
axes[1, 1].set_xticks(range(len(category_counts)))
axes[1, 1].set_xticklabels(category_counts.index, rotation=45)
axes[1, 1].set_ylabel('Count')
axes[1, 1].set_title('Segmentation Quality Distribution')
plt.tight_layout()
plt.savefig(output_path, dpi=150, bbox_inches='tight')
plt.show()
print(f"Quality control report saved: {output_path}")
# Print summary
print("\n=== Quality Control Summary ===")
print(f"Total cases: {len(results_df)}")
print(f"\nQuality breakdown:")
for cat, count in category_counts.items():
pct = (count / len(results_df)) * 100
print(f" {cat}: {count} ({pct:.1f}%)")
# Generate report if we have results
if len(df_results) > 0:
generate_qc_report(df_results, '../dice/results/quality_control_report.png')
```
## Next Steps
1. **Annotate Real Data**: Use CVAT or Label Studio to create ground truth masks
2. **Train ML Model**: Use annotated data to train segmentation model
3. **Validate**: Use this toolkit to validate model predictions
4. **Iterate**: Refine annotations and model based on Dice scores
## Resources
- [CVAT Installation](https://opencv.github.io/cvat/docs/)
- [SAM Download](https://github.com/facebookresearch/segment-anything)
- [Medical Image Segmentation Best Practices](https://arxiv.org/abs/1904.03882)
|