Spaces:
Sleeping
Sleeping
File size: 7,162 Bytes
fff5254 cda9a4d fff5254 cda9a4d fff5254 cda9a4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import gradio as gr
import json
import base64
import requests
import time
import os
from dotenv import load_dotenv
import numpy as np
from PIL import Image
import io
# Load API key from .env file
load_dotenv()
API_KEY = os.getenv('API_KEY')
CURRENT_URL = os.getenv('CURRENT_URL')
# API endpoints
TRYON_URL = CURRENT_URL + 'api/tryon/'
FETCH_URL = CURRENT_URL + 'api/tryon_state/'
# Headers for API requests
headers = {
'Authorization': 'Bearer ' + API_KEY,
'Content-Type': 'application/json',
}
# Create example directories if they don't exist
os.makedirs("examples/garments", exist_ok=True)
os.makedirs("examples/persons", exist_ok=True)
# Paths to example images (you'll need to add these files)
sample_garments = [
"samples/garments/g1.jpg",
"samples/garments/g2.jpg",
]
sample_humans = [
"samples/humans/h1.jpg",
"samples/humans/h2.jpg",
]
def preprocess_image(img, target_size=None):
"""Preprocess image without resizing if target_size is None"""
if img is None:
return None
# Convert numpy array to PIL Image if it's a numpy array
if isinstance(img, np.ndarray):
img = Image.fromarray(img.astype('uint8'))
# Only resize if target_size is specified
if target_size is not None:
img = img.resize(target_size, Image.LANCZOS)
return img
def virtual_tryon(garment_img, person_img):
# Convert images to base64
if person_img is None or garment_img is None:
return None
# Preprocess images without resizing
human_pil = preprocess_image(person_img)
garment_pil = preprocess_image(garment_img)
human_buffer = io.BytesIO()
garment_buffer = io.BytesIO()
human_pil.save(human_buffer, format="JPEG")
garment_pil.save(garment_buffer, format="JPEG")
human_base64_image = base64.b64encode(human_buffer.getvalue()).decode('utf-8')
garment_base64_image = base64.b64encode(garment_buffer.getvalue()).decode('utf-8')
# Prepare data for API request
data = {
'human_image_base64': human_base64_image,
'garment_image_base64': garment_base64_image,
}
# Make API request to start tryon process
response = requests.post(TRYON_URL, headers=headers, data=json.dumps(data))
if response.status_code != 200:
return None
json_response = response.json()
tryon_pk = json_response['tryon_pk']
# Poll for result
time_elapsed = 0
while time_elapsed < 60: # Timeout after 60 seconds
fetch_response = requests.post(FETCH_URL, headers=headers, data=json.dumps({
'tryon_pk': tryon_pk,
}))
if fetch_response.status_code != 200:
return None
json_response = fetch_response.json()
if json_response.get('message') != 'success':
return None
if json_response.get('status') == 'done':
# Download the result image
result_url = json_response['s3_url']
img_response = requests.get(result_url)
if img_response.status_code == 200:
return Image.open(io.BytesIO(img_response.content))
time.sleep(2)
time_elapsed += 2
return None
custom_css = """
body, .gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
background-color: #121212;
color: white;
}
h1, h2, h3 {
color: white !important;
}
.container {
max-width: 1200px;
margin: 0 auto;
}
.image-container img {
object-fit: contain;
max-height: 450px;
width: auto;
margin: 0 auto;
display: block;
border-radius: 8px;
}
.examples-container {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(150px, 1fr));
gap: 10px;
margin-top: 10px;
}
.examples-container img {
height: 120px;
object-fit: cover;
border-radius: 8px;
cursor: pointer;
transition: transform 0.2s;
}
.examples-container img:hover {
transform: scale(1.05);
}
button#try-on-button {
background-color: #FF6B00 !important;
color: white !important;
border: none !important;
padding: 12px 20px !important;
font-weight: 600 !important;
border-radius: 8px !important;
cursor: pointer !important;
transition: background-color 0.3s !important;
}
button#try-on-button:hover {
background-color: #FF8C33 !important;
}
footer {visibility: hidden}
"""
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as demo:
gr.HTML("<h1 style='text-align: center; margin-bottom: 20px;'>AlphaBakeVirtual Try-On</h1>")
with gr.Row():
# First column - Garment
with gr.Column(scale=1):
gr.Markdown("### Garment Image")
garment_input = gr.Image(
label="Upload a garment image",
type="pil",
elem_id="garment-image",
elem_classes=["image-container"],
height=350
)
# Add example garment images
gr.Examples(
examples=sample_garments,
inputs=garment_input,
label="Garment Examples",
examples_per_page=4
)
# Second column - Person
with gr.Column(scale=1):
gr.Markdown("### Person Image")
person_input = gr.Image(
label="Upload a person image",
type="pil",
elem_id="person-image",
elem_classes=["image-container"],
height=350
)
# Add example person images
gr.Examples(
examples=sample_humans,
inputs=person_input,
label="Person Examples",
examples_per_page=4
)
# Third column - Garment options & result
with gr.Column(scale=1):
# Try-on button
try_on_button = gr.Button("Try On", elem_id="try-on-button", variant="primary", size="lg")
# Result image
output_image = gr.Image(
label="Result",
type="pil",
elem_classes=["result-image"],
height=400
)
# Validation function
def validate_inputs(garment_img, person_img, garment_type, sleeve_length, garment_length):
if garment_img is None:
raise gr.Error("Please upload a garment image")
if person_img is None:
raise gr.Error("Please upload a person image")
# If all validations pass, proceed with try-on
try:
result = virtual_tryon(garment_img, person_img)
return result
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
# Connect button to validation and try-on functions
try_on_button.click(
fn=validate_inputs,
inputs=[garment_input, person_input],
outputs=output_image
)
if __name__ == "__main__":
demo.launch()
|