Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +436 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Gradio app for TimesNet-Gen: Generate seismic samples from latent bank.
|
| 4 |
+
Based on generate_samples_git.py (working GitHub version).
|
| 5 |
+
|
| 6 |
+
NO PLOTTING - only NPZ generation and display in Gradio interface.
|
| 7 |
+
"""
|
| 8 |
+
import os
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import torch
|
| 11 |
+
import numpy as np
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
from io import BytesIO
|
| 15 |
+
from PIL import Image
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class SimpleArgs:
|
| 19 |
+
"""Configuration for generation (matching GitHub version)."""
|
| 20 |
+
def __init__(self):
|
| 21 |
+
# Model architecture
|
| 22 |
+
self.seq_len = 6000
|
| 23 |
+
self.d_model = 128
|
| 24 |
+
self.d_ff = 256
|
| 25 |
+
self.e_layers = 2
|
| 26 |
+
self.d_layers = 2
|
| 27 |
+
self.num_kernels = 6
|
| 28 |
+
self.top_k = 2
|
| 29 |
+
self.dropout = 0.1
|
| 30 |
+
self.latent_dim = 256
|
| 31 |
+
|
| 32 |
+
# System
|
| 33 |
+
self.use_gpu = torch.cuda.is_available()
|
| 34 |
+
self.seed = 0
|
| 35 |
+
|
| 36 |
+
# Point-cloud generation
|
| 37 |
+
self.pcgen_k = 5
|
| 38 |
+
self.pcgen_jitter_std = 0.0
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def load_model(checkpoint_path, args):
|
| 42 |
+
"""Load pre-trained TimesNet-PointCloud model (matching GitHub version)."""
|
| 43 |
+
from TimesNet_PointCloud import TimesNetPointCloud
|
| 44 |
+
|
| 45 |
+
# Create model config (NO num_stations - GitHub version doesn't use it)
|
| 46 |
+
class ModelConfig:
|
| 47 |
+
def __init__(self, args):
|
| 48 |
+
self.seq_len = args.seq_len
|
| 49 |
+
self.pred_len = 0
|
| 50 |
+
self.enc_in = 3
|
| 51 |
+
self.c_out = 3
|
| 52 |
+
self.d_model = args.d_model
|
| 53 |
+
self.d_ff = args.d_ff
|
| 54 |
+
self.num_kernels = args.num_kernels
|
| 55 |
+
self.top_k = args.top_k
|
| 56 |
+
self.e_layers = args.e_layers
|
| 57 |
+
self.d_layers = args.d_layers
|
| 58 |
+
self.dropout = args.dropout
|
| 59 |
+
self.embed = 'timeF'
|
| 60 |
+
self.freq = 'h'
|
| 61 |
+
self.latent_dim = args.latent_dim
|
| 62 |
+
|
| 63 |
+
config = ModelConfig(args)
|
| 64 |
+
model = TimesNetPointCloud(config)
|
| 65 |
+
|
| 66 |
+
# Load checkpoint
|
| 67 |
+
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
| 68 |
+
if 'model_state_dict' in checkpoint:
|
| 69 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 70 |
+
else:
|
| 71 |
+
model.load_state_dict(checkpoint)
|
| 72 |
+
|
| 73 |
+
model.eval()
|
| 74 |
+
if args.use_gpu:
|
| 75 |
+
model = model.cuda()
|
| 76 |
+
|
| 77 |
+
print(f"[INFO] Model loaded successfully from {checkpoint_path}")
|
| 78 |
+
return model
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def generate_samples_from_latent_bank(model, latent_bank_path, station_id, num_samples, args):
|
| 82 |
+
"""
|
| 83 |
+
Generate samples directly from pre-computed latent bank (matching GitHub version).
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
model: TimesNet model
|
| 87 |
+
latent_bank_path: Path to latent_bank_phase1.npz
|
| 88 |
+
station_id: Station ID (e.g., '0205')
|
| 89 |
+
num_samples: Number of samples to generate
|
| 90 |
+
args: Model arguments
|
| 91 |
+
|
| 92 |
+
Returns:
|
| 93 |
+
generated_signals: (num_samples, 3, seq_len) array
|
| 94 |
+
real_names_used: List of lists indicating which latent vectors were used
|
| 95 |
+
"""
|
| 96 |
+
print(f"[INFO] Loading latent bank from {latent_bank_path}...")
|
| 97 |
+
|
| 98 |
+
try:
|
| 99 |
+
latent_data = np.load(latent_bank_path)
|
| 100 |
+
except Exception as e:
|
| 101 |
+
print(f"[ERROR] Could not load latent bank: {e}")
|
| 102 |
+
return None, None
|
| 103 |
+
|
| 104 |
+
# Load latent vectors for this station
|
| 105 |
+
latents_key = f'latents_{station_id}'
|
| 106 |
+
means_key = f'means_{station_id}'
|
| 107 |
+
stdev_key = f'stdev_{station_id}'
|
| 108 |
+
|
| 109 |
+
if latents_key not in latent_data:
|
| 110 |
+
print(f"[ERROR] Station {station_id} not found in latent bank!")
|
| 111 |
+
available = [k.replace('latents_', '') for k in latent_data.keys() if k.startswith('latents_')]
|
| 112 |
+
print(f"Available stations: {available}")
|
| 113 |
+
return None, None
|
| 114 |
+
|
| 115 |
+
latents = latent_data[latents_key] # (N_samples, seq_len, d_model)
|
| 116 |
+
means = latent_data[means_key] # (N_samples, seq_len, d_model)
|
| 117 |
+
stdevs = latent_data[stdev_key] # (N_samples, seq_len, d_model)
|
| 118 |
+
|
| 119 |
+
print(f"[INFO] Loaded {len(latents)} latent vectors for station {station_id}")
|
| 120 |
+
print(f"[INFO] Generating {num_samples} samples via bootstrap aggregation...")
|
| 121 |
+
|
| 122 |
+
generated_signals = []
|
| 123 |
+
real_names_used = []
|
| 124 |
+
|
| 125 |
+
model.eval()
|
| 126 |
+
with torch.no_grad():
|
| 127 |
+
for i in range(num_samples):
|
| 128 |
+
# Bootstrap: randomly select k latent vectors with replacement
|
| 129 |
+
k = min(args.pcgen_k, len(latents))
|
| 130 |
+
selected_indices = np.random.choice(len(latents), size=k, replace=True)
|
| 131 |
+
|
| 132 |
+
# Mix latent features (average)
|
| 133 |
+
selected_latents = latents[selected_indices] # (k, seq_len, d_model)
|
| 134 |
+
selected_means = means[selected_indices] # (k, seq_len, d_model)
|
| 135 |
+
selected_stdevs = stdevs[selected_indices] # (k, seq_len, d_model)
|
| 136 |
+
|
| 137 |
+
mixed_features = np.mean(selected_latents, axis=0) # (seq_len, d_model)
|
| 138 |
+
mixed_means = np.mean(selected_means, axis=0) # (seq_len, d_model)
|
| 139 |
+
mixed_stdevs = np.mean(selected_stdevs, axis=0) # (seq_len, d_model)
|
| 140 |
+
|
| 141 |
+
# Convert to torch tensors
|
| 142 |
+
mixed_features_torch = torch.from_numpy(mixed_features).float().unsqueeze(0) # (1, seq_len, d_model)
|
| 143 |
+
means_b = torch.from_numpy(mixed_means).float().unsqueeze(0) # (1, seq_len, d_model)
|
| 144 |
+
stdev_b = torch.from_numpy(mixed_stdevs).float().unsqueeze(0) # (1, seq_len, d_model)
|
| 145 |
+
|
| 146 |
+
if args.use_gpu:
|
| 147 |
+
mixed_features_torch = mixed_features_torch.cuda()
|
| 148 |
+
means_b = means_b.cuda()
|
| 149 |
+
stdev_b = stdev_b.cuda()
|
| 150 |
+
|
| 151 |
+
# Decode
|
| 152 |
+
xg = model.project_features_for_reconstruction(mixed_features_torch, means_b, stdev_b)
|
| 153 |
+
|
| 154 |
+
# Store - transpose to (3, 6000)
|
| 155 |
+
generated_np = xg.squeeze(0).cpu().numpy().T # (6000, 3) β (3, 6000)
|
| 156 |
+
generated_signals.append(generated_np)
|
| 157 |
+
|
| 158 |
+
# Track which latent indices were used
|
| 159 |
+
real_names_used.append([f"latent_{idx}" for idx in selected_indices])
|
| 160 |
+
|
| 161 |
+
if (i + 1) % 10 == 0:
|
| 162 |
+
print(f" Generated {i + 1}/{num_samples} samples...")
|
| 163 |
+
|
| 164 |
+
return np.array(generated_signals), real_names_used
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def save_generated_samples(generated_signals, real_names, station_id, output_dir):
|
| 168 |
+
"""Save generated samples to NPZ file (NO PLOTTING)."""
|
| 169 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 170 |
+
|
| 171 |
+
# Save timeseries NPZ
|
| 172 |
+
output_path = os.path.join(output_dir, f'station_{station_id}_generated_timeseries.npz')
|
| 173 |
+
np.savez_compressed(
|
| 174 |
+
output_path,
|
| 175 |
+
generated_signals=generated_signals,
|
| 176 |
+
signals_generated=generated_signals, # Alias for compatibility
|
| 177 |
+
real_names=real_names,
|
| 178 |
+
station_id=station_id,
|
| 179 |
+
station=station_id, # Alias for compatibility
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
print(f"[INFO] Saved {len(generated_signals)} generated samples to {output_path}")
|
| 183 |
+
return output_path
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def plot_signal_for_display(signal):
|
| 187 |
+
"""
|
| 188 |
+
Plot a single 3-component seismic signal for Gradio display.
|
| 189 |
+
|
| 190 |
+
Args:
|
| 191 |
+
signal: (3, 6000) array [E, N, Z]
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
PIL Image
|
| 195 |
+
"""
|
| 196 |
+
fig, axes = plt.subplots(3, 1, figsize=(12, 8), sharex=True)
|
| 197 |
+
|
| 198 |
+
component_names = ['East', 'North', 'Vertical']
|
| 199 |
+
colors = ['#1f77b4', '#ff7f0e', '#2ca02c']
|
| 200 |
+
|
| 201 |
+
t = np.arange(signal.shape[1]) / 100.0 # 100 Hz sampling
|
| 202 |
+
|
| 203 |
+
for idx, (ax, name, color) in enumerate(zip(axes, component_names, colors)):
|
| 204 |
+
ax.plot(t, signal[idx], color=color, linewidth=0.5, alpha=0.8)
|
| 205 |
+
ax.set_ylabel(f'{name}\n(cm/sΒ²)', fontsize=10)
|
| 206 |
+
ax.grid(True, alpha=0.3)
|
| 207 |
+
ax.set_xlim(0, 60)
|
| 208 |
+
|
| 209 |
+
axes[-1].set_xlabel('Time (s)', fontsize=11)
|
| 210 |
+
fig.suptitle('Generated Seismic Signal (3 Components)', fontsize=13, fontweight='bold')
|
| 211 |
+
plt.tight_layout()
|
| 212 |
+
|
| 213 |
+
# Convert to PIL Image
|
| 214 |
+
buf = BytesIO()
|
| 215 |
+
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
|
| 216 |
+
plt.close(fig)
|
| 217 |
+
buf.seek(0)
|
| 218 |
+
return Image.open(buf)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
# ===========================
|
| 222 |
+
# Gradio Interface Functions
|
| 223 |
+
# ===========================
|
| 224 |
+
|
| 225 |
+
def generate_samples_interface(station_id, num_samples, progress=gr.Progress()):
|
| 226 |
+
"""
|
| 227 |
+
Generate samples for Gradio interface.
|
| 228 |
+
|
| 229 |
+
Args:
|
| 230 |
+
station_id: Station ID (e.g., '0205')
|
| 231 |
+
num_samples: Number of samples to generate
|
| 232 |
+
progress: Gradio progress tracker
|
| 233 |
+
|
| 234 |
+
Returns:
|
| 235 |
+
status_message: Generation status
|
| 236 |
+
npz_path: Path to saved NPZ file
|
| 237 |
+
sample_plot: Preview plot of first generated sample
|
| 238 |
+
"""
|
| 239 |
+
try:
|
| 240 |
+
progress(0, desc="Initializing...")
|
| 241 |
+
|
| 242 |
+
# Paths
|
| 243 |
+
checkpoint_path = 'timesnet_pointcloud_phase1_final.pth'
|
| 244 |
+
latent_bank_path = 'latent_bank_phase1.npz'
|
| 245 |
+
output_dir = 'generated_outputs'
|
| 246 |
+
|
| 247 |
+
# Check files exist
|
| 248 |
+
if not os.path.exists(checkpoint_path):
|
| 249 |
+
return f"β Error: Checkpoint not found at {checkpoint_path}", None, None
|
| 250 |
+
if not os.path.exists(latent_bank_path):
|
| 251 |
+
return f"β Error: Latent bank not found at {latent_bank_path}", None, None
|
| 252 |
+
|
| 253 |
+
progress(0.1, desc="Loading model...")
|
| 254 |
+
|
| 255 |
+
# Load model
|
| 256 |
+
args = SimpleArgs()
|
| 257 |
+
model = load_model(checkpoint_path, args)
|
| 258 |
+
|
| 259 |
+
progress(0.3, desc=f"Generating {num_samples} samples...")
|
| 260 |
+
|
| 261 |
+
# Generate samples
|
| 262 |
+
generated_signals, real_names = generate_samples_from_latent_bank(
|
| 263 |
+
model, latent_bank_path, station_id, num_samples, args
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
if generated_signals is None:
|
| 267 |
+
return f"β Error: Failed to generate samples for station {station_id}", None, None
|
| 268 |
+
|
| 269 |
+
progress(0.8, desc="Saving NPZ file...")
|
| 270 |
+
|
| 271 |
+
# Save NPZ (NO PLOTTING)
|
| 272 |
+
npz_path = save_generated_samples(generated_signals, real_names, station_id, output_dir)
|
| 273 |
+
|
| 274 |
+
progress(0.95, desc="Creating preview plot...")
|
| 275 |
+
|
| 276 |
+
# Create preview plot for first sample
|
| 277 |
+
sample_plot = plot_signal_for_display(generated_signals[0])
|
| 278 |
+
|
| 279 |
+
progress(1.0, desc="Done!")
|
| 280 |
+
|
| 281 |
+
status_msg = f"β
Successfully generated {num_samples} samples for station {station_id}!\n"
|
| 282 |
+
status_msg += f"π Saved to: {npz_path}\n"
|
| 283 |
+
status_msg += f"π Preview of first generated sample shown below."
|
| 284 |
+
|
| 285 |
+
return status_msg, npz_path, sample_plot
|
| 286 |
+
|
| 287 |
+
except Exception as e:
|
| 288 |
+
import traceback
|
| 289 |
+
error_msg = f"β Error during generation:\n{str(e)}\n\n{traceback.format_exc()}"
|
| 290 |
+
return error_msg, None, None
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
def load_and_display_npz(npz_file, sample_idx):
|
| 294 |
+
"""
|
| 295 |
+
Load NPZ file and display a specific sample.
|
| 296 |
+
|
| 297 |
+
Args:
|
| 298 |
+
npz_file: Path to NPZ file
|
| 299 |
+
sample_idx: Index of sample to display (0-based)
|
| 300 |
+
|
| 301 |
+
Returns:
|
| 302 |
+
status_message: Load status
|
| 303 |
+
sample_plot: Plot of selected sample
|
| 304 |
+
"""
|
| 305 |
+
try:
|
| 306 |
+
if npz_file is None:
|
| 307 |
+
return "β οΈ No NPZ file provided", None
|
| 308 |
+
|
| 309 |
+
# Load NPZ
|
| 310 |
+
data = np.load(npz_file)
|
| 311 |
+
generated_signals = data['generated_signals']
|
| 312 |
+
|
| 313 |
+
if sample_idx < 0 or sample_idx >= len(generated_signals):
|
| 314 |
+
return f"β οΈ Sample index {sample_idx} out of range (0-{len(generated_signals)-1})", None
|
| 315 |
+
|
| 316 |
+
# Plot selected sample
|
| 317 |
+
sample_plot = plot_signal_for_display(generated_signals[sample_idx])
|
| 318 |
+
|
| 319 |
+
status_msg = f"β
Loaded NPZ with {len(generated_signals)} samples\n"
|
| 320 |
+
status_msg += f"π Displaying sample #{sample_idx}"
|
| 321 |
+
|
| 322 |
+
return status_msg, sample_plot
|
| 323 |
+
|
| 324 |
+
except Exception as e:
|
| 325 |
+
import traceback
|
| 326 |
+
error_msg = f"β Error loading NPZ:\n{str(e)}\n\n{traceback.format_exc()}"
|
| 327 |
+
return error_msg, None
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
# ===========================
|
| 331 |
+
# Gradio App
|
| 332 |
+
# ===========================
|
| 333 |
+
|
| 334 |
+
def create_demo():
|
| 335 |
+
"""Create Gradio interface."""
|
| 336 |
+
|
| 337 |
+
with gr.Blocks(title="TimesNet-Gen: Seismic Sample Generator") as demo:
|
| 338 |
+
gr.Markdown("""
|
| 339 |
+
# π TimesNet-Gen: Seismic Sample Generator
|
| 340 |
+
|
| 341 |
+
Generate synthetic seismic signals from pre-trained latent bank.
|
| 342 |
+
|
| 343 |
+
**Instructions:**
|
| 344 |
+
1. Select a station ID (5 fine-tuned stations available)
|
| 345 |
+
2. Choose number of samples to generate
|
| 346 |
+
3. Click "Generate Samples" and wait
|
| 347 |
+
4. Preview generated samples or download NPZ file
|
| 348 |
+
""")
|
| 349 |
+
|
| 350 |
+
with gr.Tab("Generate Samples"):
|
| 351 |
+
with gr.Row():
|
| 352 |
+
with gr.Column(scale=1):
|
| 353 |
+
station_dropdown = gr.Dropdown(
|
| 354 |
+
choices=['0205', '1716', '2020', '3130', '4628'],
|
| 355 |
+
value='0205',
|
| 356 |
+
label="Station ID",
|
| 357 |
+
info="Select target station"
|
| 358 |
+
)
|
| 359 |
+
num_samples_slider = gr.Slider(
|
| 360 |
+
minimum=1,
|
| 361 |
+
maximum=200,
|
| 362 |
+
value=50,
|
| 363 |
+
step=1,
|
| 364 |
+
label="Number of Samples",
|
| 365 |
+
info="How many samples to generate"
|
| 366 |
+
)
|
| 367 |
+
generate_btn = gr.Button("π Generate Samples", variant="primary")
|
| 368 |
+
|
| 369 |
+
with gr.Column(scale=2):
|
| 370 |
+
status_text = gr.Textbox(
|
| 371 |
+
label="Status",
|
| 372 |
+
lines=5,
|
| 373 |
+
interactive=False
|
| 374 |
+
)
|
| 375 |
+
npz_file_output = gr.File(
|
| 376 |
+
label="Generated NPZ File",
|
| 377 |
+
interactive=False
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
gr.Markdown("### Preview (First Generated Sample)")
|
| 381 |
+
preview_plot = gr.Image(label="Sample Preview")
|
| 382 |
+
|
| 383 |
+
generate_btn.click(
|
| 384 |
+
fn=generate_samples_interface,
|
| 385 |
+
inputs=[station_dropdown, num_samples_slider],
|
| 386 |
+
outputs=[status_text, npz_file_output, preview_plot]
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
with gr.Tab("View Saved Samples"):
|
| 390 |
+
gr.Markdown("### Load and view samples from saved NPZ file")
|
| 391 |
+
|
| 392 |
+
with gr.Row():
|
| 393 |
+
with gr.Column(scale=1):
|
| 394 |
+
npz_upload = gr.File(
|
| 395 |
+
label="Upload NPZ File",
|
| 396 |
+
file_types=['.npz']
|
| 397 |
+
)
|
| 398 |
+
sample_idx_slider = gr.Slider(
|
| 399 |
+
minimum=0,
|
| 400 |
+
maximum=199,
|
| 401 |
+
value=0,
|
| 402 |
+
step=1,
|
| 403 |
+
label="Sample Index",
|
| 404 |
+
info="Which sample to display (0-based)"
|
| 405 |
+
)
|
| 406 |
+
load_btn = gr.Button("π Load and Display", variant="secondary")
|
| 407 |
+
|
| 408 |
+
with gr.Column(scale=2):
|
| 409 |
+
load_status = gr.Textbox(
|
| 410 |
+
label="Status",
|
| 411 |
+
lines=3,
|
| 412 |
+
interactive=False
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
display_plot = gr.Image(label="Sample Display")
|
| 416 |
+
|
| 417 |
+
load_btn.click(
|
| 418 |
+
fn=load_and_display_npz,
|
| 419 |
+
inputs=[npz_upload, sample_idx_slider],
|
| 420 |
+
outputs=[load_status, display_plot]
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
gr.Markdown("""
|
| 424 |
+
---
|
| 425 |
+
**Model:** TimesNet-PointCloud
|
| 426 |
+
**Method:** Bootstrap aggregation from latent bank
|
| 427 |
+
**Stations:** 5 fine-tuned Turkish strong-motion stations
|
| 428 |
+
**Output:** 3-component acceleration signals (E, N, Z) @ 100 Hz
|
| 429 |
+
""")
|
| 430 |
+
|
| 431 |
+
return demo
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
if __name__ == "__main__":
|
| 435 |
+
demo = create_demo()
|
| 436 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
numpy>=1.24.0
|
| 4 |
+
scipy>=1.10.0
|
| 5 |
+
matplotlib>=3.7.0
|
| 6 |
+
Pillow>=9.0.0
|
| 7 |
+
huggingface_hub>=0.20.0
|
| 8 |
+
|