Spaces:
Sleeping
Sleeping
Upload 11 files
Browse files- pages/10_Optimized_Result_Analysis.py +399 -0
- pages/1_Data_Validation.py +241 -0
- pages/2_Transformations.py +612 -0
- pages/3_Model_Tuning.py +437 -0
- pages/4_Saved_Model_Results.py +413 -0
- pages/5_Model_Result_Overview.py +103 -0
- pages/6_Build_Response_Curves.py +168 -0
- pages/8_Scenario_Planner.py +1133 -0
- pages/9_Saved_Scenarios.py +276 -0
- pages/Data_Import.py +891 -0
- pages/actual_data.csv +158 -0
pages/10_Optimized_Result_Analysis.py
ADDED
|
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from numerize.numerize import numerize
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from utilities import (format_numbers,decimal_formater,
|
| 5 |
+
load_local_css,set_header,
|
| 6 |
+
initialize_data,
|
| 7 |
+
load_authenticator)
|
| 8 |
+
import pickle
|
| 9 |
+
import streamlit_authenticator as stauth
|
| 10 |
+
import yaml
|
| 11 |
+
from yaml import SafeLoader
|
| 12 |
+
from classes import class_from_dict
|
| 13 |
+
import plotly.express as px
|
| 14 |
+
import numpy as np
|
| 15 |
+
import plotly.graph_objects as go
|
| 16 |
+
import pandas as pd
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def summary_plot(data, x, y, title, text_column, color, format_as_percent=False, format_as_decimal=False):
|
| 20 |
+
fig = px.bar(data, x=x, y=y, orientation='h',
|
| 21 |
+
title=title, text=text_column, color=color)
|
| 22 |
+
fig.update_layout(showlegend=False)
|
| 23 |
+
data[text_column] = pd.to_numeric(data[text_column], errors='coerce')
|
| 24 |
+
|
| 25 |
+
# Update the format of the displayed text based on the chosen format
|
| 26 |
+
if format_as_percent:
|
| 27 |
+
fig.update_traces(texttemplate='%{text:.0%}', textposition='outside', hovertemplate='%{x:.0%}')
|
| 28 |
+
elif format_as_decimal:
|
| 29 |
+
fig.update_traces(texttemplate='%{text:.2f}', textposition='outside', hovertemplate='%{x:.2f}')
|
| 30 |
+
else:
|
| 31 |
+
fig.update_traces(texttemplate='%{text:.2s}', textposition='outside', hovertemplate='%{x:.2s}')
|
| 32 |
+
|
| 33 |
+
fig.update_layout(xaxis_title=x, yaxis_title='Channel Name', showlegend=False)
|
| 34 |
+
return fig
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def stacked_summary_plot(data, x, y, title, text_column, color_column, stack_column=None, format_as_percent=False, format_as_decimal=False):
|
| 38 |
+
fig = px.bar(data, x=x, y=y, orientation='h',
|
| 39 |
+
title=title, text=text_column, color=color_column, facet_col=stack_column)
|
| 40 |
+
fig.update_layout(showlegend=False)
|
| 41 |
+
data[text_column] = pd.to_numeric(data[text_column], errors='coerce')
|
| 42 |
+
|
| 43 |
+
# Update the format of the displayed text based on the chosen format
|
| 44 |
+
if format_as_percent:
|
| 45 |
+
fig.update_traces(texttemplate='%{text:.0%}', textposition='outside', hovertemplate='%{x:.0%}')
|
| 46 |
+
elif format_as_decimal:
|
| 47 |
+
fig.update_traces(texttemplate='%{text:.2f}', textposition='outside', hovertemplate='%{x:.2f}')
|
| 48 |
+
else:
|
| 49 |
+
fig.update_traces(texttemplate='%{text:.2s}', textposition='outside', hovertemplate='%{x:.2s}')
|
| 50 |
+
|
| 51 |
+
fig.update_layout(xaxis_title=x, yaxis_title='', showlegend=False)
|
| 52 |
+
return fig
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def funnel_plot(data, x, y, title, text_column, color_column, format_as_percent=False, format_as_decimal=False):
|
| 57 |
+
data[text_column] = pd.to_numeric(data[text_column], errors='coerce')
|
| 58 |
+
|
| 59 |
+
# Round the numeric values in the text column to two decimal points
|
| 60 |
+
data[text_column] = data[text_column].round(2)
|
| 61 |
+
|
| 62 |
+
# Create a color map for categorical data
|
| 63 |
+
color_map = {category: f'rgb({i * 30 % 255},{i * 50 % 255},{i * 70 % 255})' for i, category in enumerate(data[color_column].unique())}
|
| 64 |
+
|
| 65 |
+
fig = go.Figure(go.Funnel(
|
| 66 |
+
y=data[y],
|
| 67 |
+
x=data[x],
|
| 68 |
+
text=data[text_column],
|
| 69 |
+
marker=dict(color=data[color_column].map(color_map)),
|
| 70 |
+
textinfo="value",
|
| 71 |
+
hoverinfo='y+x+text'
|
| 72 |
+
))
|
| 73 |
+
|
| 74 |
+
# Update the format of the displayed text based on the chosen format
|
| 75 |
+
if format_as_percent:
|
| 76 |
+
fig.update_layout(title=title, funnelmode="percent")
|
| 77 |
+
elif format_as_decimal:
|
| 78 |
+
fig.update_layout(title=title, funnelmode="overlay")
|
| 79 |
+
else:
|
| 80 |
+
fig.update_layout(title=title, funnelmode="group")
|
| 81 |
+
|
| 82 |
+
return fig
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
st.set_page_config(layout='wide')
|
| 86 |
+
load_local_css('styles.css')
|
| 87 |
+
set_header()
|
| 88 |
+
|
| 89 |
+
# for k, v in st.session_state.items():
|
| 90 |
+
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
| 91 |
+
# st.session_state[k] = v
|
| 92 |
+
|
| 93 |
+
st.empty()
|
| 94 |
+
st.header('Model Result Analysis')
|
| 95 |
+
spends_data=pd.read_excel('Overview_data_test.xlsx')
|
| 96 |
+
|
| 97 |
+
with open('summary_df.pkl', 'rb') as file:
|
| 98 |
+
summary_df_sorted = pickle.load(file)
|
| 99 |
+
|
| 100 |
+
selected_scenario= st.selectbox('Select Saved Scenarios',['S1','S2'])
|
| 101 |
+
|
| 102 |
+
st.header('Optimized Spends Overview')
|
| 103 |
+
___columns=st.columns(3)
|
| 104 |
+
with ___columns[2]:
|
| 105 |
+
fig=summary_plot(summary_df_sorted, x='Delta_percent', y='Channel_name', title='Delta', text_column='Delta_percent',color='Channel_name')
|
| 106 |
+
st.plotly_chart(fig,use_container_width=True)
|
| 107 |
+
with ___columns[0]:
|
| 108 |
+
fig=summary_plot(summary_df_sorted, x='Actual_spend', y='Channel_name', title='Actual Spend', text_column='Actual_spend',color='Channel_name')
|
| 109 |
+
st.plotly_chart(fig,use_container_width=True)
|
| 110 |
+
with ___columns[1]:
|
| 111 |
+
fig=summary_plot(summary_df_sorted, x='Optimized_spend', y='Channel_name', title='Planned Spend', text_column='Optimized_spend',color='Channel_name')
|
| 112 |
+
st.plotly_chart(fig,use_container_width=False)
|
| 113 |
+
|
| 114 |
+
st.header(' Budget Allocation')
|
| 115 |
+
summary_df_sorted['Perc_alloted']=np.round(summary_df_sorted['Optimized_spend']/summary_df_sorted['Optimized_spend'].sum(),2)
|
| 116 |
+
columns2=st.columns(2)
|
| 117 |
+
with columns2[0]:
|
| 118 |
+
fig=summary_plot(summary_df_sorted, x='Optimized_spend', y='Channel_name', title='Planned Spend', text_column='Optimized_spend',color='Channel_name')
|
| 119 |
+
st.plotly_chart(fig,use_container_width=True)
|
| 120 |
+
with columns2[1]:
|
| 121 |
+
fig=summary_plot(summary_df_sorted, x='Perc_alloted', y='Channel_name', title='% Split', text_column='Perc_alloted',color='Channel_name',format_as_percent=True)
|
| 122 |
+
st.plotly_chart(fig,use_container_width=True)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
if 'raw_data' not in st.session_state:
|
| 126 |
+
st.session_state['raw_data']=pd.read_excel('raw_data_nov7_combined1.xlsx')
|
| 127 |
+
st.session_state['raw_data']=st.session_state['raw_data'][st.session_state['raw_data']['MediaChannelName'].isin(summary_df_sorted['Channel_name'].unique())]
|
| 128 |
+
st.session_state['raw_data']=st.session_state['raw_data'][st.session_state['raw_data']['Date'].isin(spends_data["Date"].unique())]
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
#st.write(st.session_state['raw_data']['ResponseMetricName'])
|
| 133 |
+
# st.write(st.session_state['raw_data'])
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
st.header('Response Forecast Overview')
|
| 137 |
+
raw_data=st.session_state['raw_data']
|
| 138 |
+
effectiveness_overall=raw_data.groupby('ResponseMetricName').agg({'ResponseMetricValue': 'sum'}).reset_index()
|
| 139 |
+
effectiveness_overall['Efficiency']=effectiveness_overall['ResponseMetricValue'].map(lambda x: x/raw_data['Media Spend'].sum() )
|
| 140 |
+
# st.write(effectiveness_overall)
|
| 141 |
+
|
| 142 |
+
columns6=st.columns(3)
|
| 143 |
+
|
| 144 |
+
effectiveness_overall.sort_values(by=['ResponseMetricValue'],ascending=False,inplace=True)
|
| 145 |
+
effectiveness_overall=np.round(effectiveness_overall,2)
|
| 146 |
+
effectiveness_overall['ResponseMetric'] = effectiveness_overall['ResponseMetricName'].apply(lambda x: 'BAU' if 'BAU' in x else ('Gamified' if 'Gamified' in x else x))
|
| 147 |
+
# effectiveness_overall=np.where(effectiveness_overall[effectiveness_overall['ResponseMetricName']=="Adjusted Account Approval BAU"],"Adjusted Account Approval BAU",effectiveness_overall['ResponseMetricName'])
|
| 148 |
+
|
| 149 |
+
effectiveness_overall.replace({'ResponseMetricName':{'BAU approved clients - Appsflyer':'Approved clients - Appsflyer',
|
| 150 |
+
'Gamified approved clients - Appsflyer':'Approved clients - Appsflyer'}},inplace=True)
|
| 151 |
+
|
| 152 |
+
# st.write(effectiveness_overall.sort_values(by=['ResponseMetricValue'],ascending=False))
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
condition = effectiveness_overall['ResponseMetricName'] == "Adjusted Account Approval BAU"
|
| 156 |
+
condition1= effectiveness_overall['ResponseMetricName'] == "Approved clients - Appsflyer"
|
| 157 |
+
effectiveness_overall['ResponseMetric'] = np.where(condition, "Adjusted Account Approval BAU", effectiveness_overall['ResponseMetric'])
|
| 158 |
+
|
| 159 |
+
effectiveness_overall['ResponseMetricName'] = np.where(condition1, "Approved clients - Appsflyer (BAU, Gamified)", effectiveness_overall['ResponseMetricName'])
|
| 160 |
+
# effectiveness_overall=pd.DataFrame({'ResponseMetricName':["App Installs - Appsflyer",'Account Requests - Appsflyer',
|
| 161 |
+
# 'Total Adjusted Account Approval','Adjusted Account Approval BAU',
|
| 162 |
+
# 'Approved clients - Appsflyer','Approved clients - Appsflyer'],
|
| 163 |
+
# 'ResponseMetricValue':[683067,367020,112315,79768,36661,16834],
|
| 164 |
+
# 'Efficiency':[1.24,0.67,0.2,0.14,0.07,0.03],
|
| 165 |
+
custom_colors = {
|
| 166 |
+
'App Installs - Appsflyer': 'rgb(255, 135, 0)', # Steel Blue (Blue)
|
| 167 |
+
'Account Requests - Appsflyer': 'rgb(125, 239, 161)', # Cornflower Blue (Blue)
|
| 168 |
+
'Adjusted Account Approval': 'rgb(129, 200, 255)', # Dodger Blue (Blue)
|
| 169 |
+
'Adjusted Account Approval BAU': 'rgb(255, 207, 98)', # Light Sky Blue (Blue)
|
| 170 |
+
'Approved clients - Appsflyer': 'rgb(0, 97, 198)', # Light Blue (Blue)
|
| 171 |
+
"BAU": 'rgb(41, 176, 157)', # Steel Blue (Blue)
|
| 172 |
+
"Gamified": 'rgb(213, 218, 229)' # Silver (Gray)
|
| 173 |
+
# Add more categories and their respective shades of blue as needed
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
with columns6[0]:
|
| 182 |
+
revenue=(effectiveness_overall[effectiveness_overall['ResponseMetricName']=='Total Approved Accounts - Revenue']['ResponseMetricValue']).iloc[0]
|
| 183 |
+
revenue=round(revenue / 1_000_000, 2)
|
| 184 |
+
|
| 185 |
+
# st.metric('Total Revenue', f"${revenue} M")
|
| 186 |
+
# with columns6[1]:
|
| 187 |
+
# BAU=(effectiveness_overall[effectiveness_overall['ResponseMetricName']=='BAU approved clients - Revenue']['ResponseMetricValue']).iloc[0]
|
| 188 |
+
# BAU=round(BAU / 1_000_000, 2)
|
| 189 |
+
# st.metric('BAU approved clients - Revenue', f"${BAU} M")
|
| 190 |
+
# with columns6[2]:
|
| 191 |
+
# Gam=(effectiveness_overall[effectiveness_overall['ResponseMetricName']=='Gamified approved clients - Revenue']['ResponseMetricValue']).iloc[0]
|
| 192 |
+
# Gam=round(Gam / 1_000_000, 2)
|
| 193 |
+
# st.metric('Gamified approved clients - Revenue', f"${Gam} M")
|
| 194 |
+
|
| 195 |
+
# st.write(effectiveness_overall)
|
| 196 |
+
data = {'Revenue': ['BAU approved clients - Revenue', 'Gamified approved clients- Revenue'],
|
| 197 |
+
'ResponseMetricValue': [70200000, 1770000],
|
| 198 |
+
'Efficiency':[127.54,3.21]}
|
| 199 |
+
df = pd.DataFrame(data)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
columns9=st.columns([0.60,0.40])
|
| 203 |
+
with columns9[0]:
|
| 204 |
+
figd = px.pie(df,
|
| 205 |
+
names='Revenue',
|
| 206 |
+
values='ResponseMetricValue',
|
| 207 |
+
hole=0.3, # set the size of the hole in the donut
|
| 208 |
+
title='Effectiveness')
|
| 209 |
+
figd.update_layout(
|
| 210 |
+
margin=dict(l=0, r=0, b=0, t=0),width=100, height=180,legend=dict(
|
| 211 |
+
orientation='v', # set orientation to horizontal
|
| 212 |
+
x=0, # set x to 0 to move to the left
|
| 213 |
+
y=0.8 # adjust y as needed
|
| 214 |
+
)
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
st.plotly_chart(figd, use_container_width=True)
|
| 218 |
+
|
| 219 |
+
with columns9[1]:
|
| 220 |
+
figd1 = px.pie(df,
|
| 221 |
+
names='Revenue',
|
| 222 |
+
values='Efficiency',
|
| 223 |
+
hole=0.3, # set the size of the hole in the donut
|
| 224 |
+
title='Efficiency')
|
| 225 |
+
figd1.update_layout(
|
| 226 |
+
margin=dict(l=0, r=0, b=0, t=0),width=100,height=180,showlegend=False
|
| 227 |
+
)
|
| 228 |
+
st.plotly_chart(figd1, use_container_width=True)
|
| 229 |
+
|
| 230 |
+
effectiveness_overall['Response Metric Name']=effectiveness_overall['ResponseMetricName']
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
columns4= st.columns([0.55,0.45])
|
| 235 |
+
with columns4[0]:
|
| 236 |
+
fig=px.funnel(effectiveness_overall[~(effectiveness_overall['ResponseMetricName'].isin(['Total Approved Accounts - Revenue',
|
| 237 |
+
'BAU approved clients - Revenue',
|
| 238 |
+
'Gamified approved clients - Revenue',
|
| 239 |
+
"Total Approved Accounts - Appsflyer"]))],
|
| 240 |
+
x='ResponseMetricValue', y='Response Metric Name',color='ResponseMetric',
|
| 241 |
+
color_discrete_map=custom_colors,title='Effectiveness',
|
| 242 |
+
labels=None)
|
| 243 |
+
custom_y_labels=['App Installs - Appsflyer','Account Requests - Appsflyer','Adjusted Account Approval','Adjusted Account Approval BAU',
|
| 244 |
+
"Approved clients - Appsflyer (BAU, Gamified)"
|
| 245 |
+
]
|
| 246 |
+
fig.update_layout(showlegend=False,
|
| 247 |
+
yaxis=dict(
|
| 248 |
+
tickmode='array',
|
| 249 |
+
ticktext=custom_y_labels,
|
| 250 |
+
)
|
| 251 |
+
)
|
| 252 |
+
fig.update_traces(textinfo='value', textposition='inside', texttemplate='%{x:.2s} ', hoverinfo='y+x+percent initial')
|
| 253 |
+
|
| 254 |
+
last_trace_index = len(fig.data) - 1
|
| 255 |
+
fig.update_traces(marker=dict(line=dict(color='black', width=2)), selector=dict(marker=dict(color='blue')))
|
| 256 |
+
|
| 257 |
+
st.plotly_chart(fig,use_container_width=True)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
with columns4[1]:
|
| 264 |
+
|
| 265 |
+
# Your existing code for creating the bar chart
|
| 266 |
+
fig1 = px.bar((effectiveness_overall[~(effectiveness_overall['ResponseMetricName'].isin(['Total Approved Accounts - Revenue',
|
| 267 |
+
'BAU approved clients - Revenue',
|
| 268 |
+
'Gamified approved clients - Revenue',
|
| 269 |
+
"Total Approved Accounts - Appsflyer"]))]).sort_values(by='ResponseMetricValue'),
|
| 270 |
+
x='Efficiency', y='Response Metric Name',
|
| 271 |
+
color_discrete_map=custom_colors, color='ResponseMetric',
|
| 272 |
+
labels=None,text_auto=True,title='Efficiency'
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
# Update layout and traces
|
| 276 |
+
fig1.update_traces(customdata=effectiveness_overall['Efficiency'],
|
| 277 |
+
textposition='auto')
|
| 278 |
+
fig1.update_layout(showlegend=False)
|
| 279 |
+
fig1.update_yaxes(title='',showticklabels=False)
|
| 280 |
+
fig1.update_xaxes(title='',showticklabels=False)
|
| 281 |
+
fig1.update_xaxes(tickfont=dict(size=20))
|
| 282 |
+
fig1.update_yaxes(tickfont=dict(size=20))
|
| 283 |
+
st.plotly_chart(fig1, use_container_width=True)
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
effectiveness_overall_revenue=pd.DataFrame({'ResponseMetricName':['Approved Clients','Approved Clients'],
|
| 287 |
+
'ResponseMetricValue':[70201070,1768900],
|
| 288 |
+
'Efficiency':[127.54,3.21],
|
| 289 |
+
'ResponseMetric':['BAU','Gamified']
|
| 290 |
+
})
|
| 291 |
+
# from plotly.subplots import make_subplots
|
| 292 |
+
# fig = make_subplots(rows=1, cols=2,
|
| 293 |
+
# subplot_titles=["Effectiveness", "Efficiency"])
|
| 294 |
+
|
| 295 |
+
# # Add first plot as subplot
|
| 296 |
+
# fig.add_trace(go.Funnel(
|
| 297 |
+
# x = fig.data[0].x,
|
| 298 |
+
# y = fig.data[0].y,
|
| 299 |
+
# textinfo = 'value+percent initial',
|
| 300 |
+
# hoverinfo = 'x+y+percent initial'
|
| 301 |
+
# ), row=1, col=1)
|
| 302 |
+
|
| 303 |
+
# # Update layout for first subplot
|
| 304 |
+
# fig.update_xaxes(title_text="Response Metric Value", row=1, col=1)
|
| 305 |
+
# fig.update_yaxes(ticktext = custom_y_labels, row=1, col=1)
|
| 306 |
+
|
| 307 |
+
# # Add second plot as subplot
|
| 308 |
+
# fig.add_trace(go.Bar(
|
| 309 |
+
# x = fig1.data[0].x,
|
| 310 |
+
# y = fig1.data[0].y,
|
| 311 |
+
# customdata = fig1.data[0].customdata,
|
| 312 |
+
# textposition = 'auto'
|
| 313 |
+
# ), row=1, col=2)
|
| 314 |
+
|
| 315 |
+
# # Update layout for second subplot
|
| 316 |
+
# fig.update_xaxes(title_text="Efficiency", showticklabels=False, row=1, col=2)
|
| 317 |
+
# fig.update_yaxes(title='', showticklabels=False, row=1, col=2)
|
| 318 |
+
|
| 319 |
+
# fig.update_layout(height=600, width=800, title_text="Key Metrics")
|
| 320 |
+
# st.plotly_chart(fig)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
st.header('Return Forecast by Media Channel')
|
| 324 |
+
with st.expander("Return Forecast by Media Channel"):
|
| 325 |
+
metric_data=[val for val in list(st.session_state['raw_data']['ResponseMetricName'].unique()) if val!=np.NaN]
|
| 326 |
+
# st.write(metric_data)
|
| 327 |
+
metric=st.selectbox('Select Metric',metric_data,index=1)
|
| 328 |
+
|
| 329 |
+
selected_metric=st.session_state['raw_data'][st.session_state['raw_data']['ResponseMetricName']==metric]
|
| 330 |
+
# st.dataframe(selected_metric.head(2))
|
| 331 |
+
selected_metric=st.session_state['raw_data'][st.session_state['raw_data']['ResponseMetricName']==metric]
|
| 332 |
+
effectiveness=selected_metric.groupby(by=['MediaChannelName'])['ResponseMetricValue'].sum()
|
| 333 |
+
effectiveness_df=pd.DataFrame({'Channel':effectiveness.index,"ResponseMetricValue":effectiveness.values})
|
| 334 |
+
|
| 335 |
+
summary_df_sorted=summary_df_sorted.merge(effectiveness_df,left_on="Channel_name",right_on='Channel')
|
| 336 |
+
|
| 337 |
+
# st.dataframe(summary_df_sorted.head(2))
|
| 338 |
+
summary_df_sorted['Efficiency']=summary_df_sorted['ResponseMetricValue']/summary_df_sorted['Optimized_spend']
|
| 339 |
+
# # # st.dataframe(summary_df_sorted.head(2))
|
| 340 |
+
# st.dataframe(summary_df_sorted.head(2))
|
| 341 |
+
|
| 342 |
+
columns= st.columns(3)
|
| 343 |
+
with columns[0]:
|
| 344 |
+
fig=summary_plot(summary_df_sorted, x='Optimized_spend', y='Channel_name', title='', text_column='Optimized_spend',color='Channel_name')
|
| 345 |
+
st.plotly_chart(fig,use_container_width=True)
|
| 346 |
+
with columns[1]:
|
| 347 |
+
|
| 348 |
+
# effectiveness=(selected_metric.groupby(by=['MediaChannelName'])['ResponseMetricValue'].sum()).values
|
| 349 |
+
# effectiveness_df=pd.DataFrame({'Channel':st.session_state['raw_data']['MediaChannelName'].unique(),"ResponseMetricValue":effectiveness})
|
| 350 |
+
# # effectiveness.reset_index(inplace=True)
|
| 351 |
+
# # st.dataframe(effectiveness.head())
|
| 352 |
+
fig=summary_plot(summary_df_sorted, x='ResponseMetricValue', y='Channel_name', title='Effectiveness', text_column='ResponseMetricValue',color='Channel_name')
|
| 353 |
+
st.plotly_chart(fig,use_container_width=True)
|
| 354 |
+
|
| 355 |
+
with columns[2]:
|
| 356 |
+
fig=summary_plot(summary_df_sorted, x='Efficiency', y='Channel_name', title='Efficiency', text_column='Efficiency',color='Channel_name',format_as_decimal=True)
|
| 357 |
+
st.plotly_chart(fig,use_container_width=True)
|
| 358 |
+
|
| 359 |
+
import plotly.express as px
|
| 360 |
+
import plotly.graph_objects as go
|
| 361 |
+
from plotly.subplots import make_subplots
|
| 362 |
+
|
| 363 |
+
# Create figure with subplots
|
| 364 |
+
# fig = make_subplots(rows=1, cols=2)
|
| 365 |
+
|
| 366 |
+
# # Add funnel plot to subplot 1
|
| 367 |
+
# fig.add_trace(
|
| 368 |
+
# go.Funnel(
|
| 369 |
+
# x=effectiveness_overall[~(effectiveness_overall['ResponseMetricName'].isin(['Total Approved Accounts - Revenue', 'BAU approved clients - Revenue', 'Gamified approved clients - Revenue', "Total Approved Accounts - Appsflyer"]))]['ResponseMetricValue'],
|
| 370 |
+
# y=effectiveness_overall[~(effectiveness_overall['ResponseMetricName'].isin(['Total Approved Accounts - Revenue', 'BAU approved clients - Revenue', 'Gamified approved clients - Revenue', "Total Approved Accounts - Appsflyer"]))]['ResponseMetricName'],
|
| 371 |
+
# textposition="inside",
|
| 372 |
+
# texttemplate="%{x:.2s}",
|
| 373 |
+
# customdata=effectiveness_overall['Efficiency'],
|
| 374 |
+
# hovertemplate="%{customdata:.2f}<extra></extra>"
|
| 375 |
+
# ),
|
| 376 |
+
# row=1, col=1
|
| 377 |
+
# )
|
| 378 |
+
|
| 379 |
+
# # Add bar plot to subplot 2
|
| 380 |
+
# fig.add_trace(
|
| 381 |
+
# go.Bar(
|
| 382 |
+
# x=effectiveness_overall.sort_values(by='ResponseMetricValue')['Efficiency'],
|
| 383 |
+
# y=effectiveness_overall.sort_values(by='ResponseMetricValue')['ResponseMetricName'],
|
| 384 |
+
# marker_color=effectiveness_overall['ResponseMetric'],
|
| 385 |
+
# customdata=effectiveness_overall['Efficiency'],
|
| 386 |
+
# hovertemplate="%{customdata:.2f}<extra></extra>",
|
| 387 |
+
# textposition="outside"
|
| 388 |
+
# ),
|
| 389 |
+
# row=1, col=2
|
| 390 |
+
# )
|
| 391 |
+
|
| 392 |
+
# # Update layout
|
| 393 |
+
# fig.update_layout(title_text="Effectiveness")
|
| 394 |
+
# fig.update_yaxes(title_text="", row=1, col=1)
|
| 395 |
+
# fig.update_yaxes(title_text="", showticklabels=False, row=1, col=2)
|
| 396 |
+
# fig.update_xaxes(title_text="Efficiency", showticklabels=False, row=1, col=2)
|
| 397 |
+
|
| 398 |
+
# # Show figure
|
| 399 |
+
# st.plotly_chart(fig)
|
pages/1_Data_Validation.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
from Eda_functions import *
|
| 6 |
+
import numpy as np
|
| 7 |
+
import re
|
| 8 |
+
import pickle
|
| 9 |
+
from ydata_profiling import ProfileReport
|
| 10 |
+
from streamlit_pandas_profiling import st_profile_report
|
| 11 |
+
import streamlit as st
|
| 12 |
+
import streamlit.components.v1 as components
|
| 13 |
+
import sweetviz as sv
|
| 14 |
+
from utilities import set_header,initialize_data,load_local_css
|
| 15 |
+
from st_aggrid import GridOptionsBuilder,GridUpdateMode
|
| 16 |
+
from st_aggrid import GridOptionsBuilder
|
| 17 |
+
from st_aggrid import AgGrid
|
| 18 |
+
import base64
|
| 19 |
+
|
| 20 |
+
st.set_page_config(
|
| 21 |
+
page_title="Data Validation",
|
| 22 |
+
page_icon=":shark:",
|
| 23 |
+
layout="wide",
|
| 24 |
+
initial_sidebar_state='collapsed'
|
| 25 |
+
)
|
| 26 |
+
load_local_css('styles.css')
|
| 27 |
+
set_header()
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
#preprocessing
|
| 32 |
+
# with open('Categorised_data.pkl', 'rb') as file:
|
| 33 |
+
# Categorised_data = pickle.load(file)
|
| 34 |
+
# with open("edited_dataframe.pkl", 'rb') as file:
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# df = pickle.load(file)
|
| 38 |
+
# date=df.index
|
| 39 |
+
# df.reset_index(inplace=True)
|
| 40 |
+
# df['Date'] = pd.to_datetime(date)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
#prospects=pd.read_excel('EDA_Data.xlsx',sheet_name='Prospects')
|
| 44 |
+
#spends=pd.read_excel('EDA_Data.xlsx',sheet_name='SPEND INPUT')
|
| 45 |
+
#spends.columns=['Week','Streaming (Spends)','TV (Spends)','Search (Spends)','Digital (Spends)']
|
| 46 |
+
#df=pd.concat([df,spends],axis=1)
|
| 47 |
+
|
| 48 |
+
#df['Date'] =pd.to_datetime(df['Date']).dt.strftime('%m/%d/%Y')
|
| 49 |
+
#df['Prospects']=prospects['Prospects']
|
| 50 |
+
#df.drop(['Week'],axis=1,inplace=True)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
st.title('Data Validation and Insights')
|
| 54 |
+
|
| 55 |
+
with open("Pickle_files/main_df",'rb') as f:
|
| 56 |
+
st.session_state['cleaned_data']= pickle.load(f)
|
| 57 |
+
with open("Pickle_files/category_dict",'rb') as c:
|
| 58 |
+
st.session_state['category_dict']=pickle.load(c)
|
| 59 |
+
|
| 60 |
+
# st.write(st.session_state['cleaned_data'])
|
| 61 |
+
|
| 62 |
+
target_variables=[st.session_state['category_dict'][key] for key in st.session_state['category_dict'].keys() if key =='Response_Metric']
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
target_column = st.selectbox('Select the Target Feature/Dependent Variable (will be used in all charts as reference)',list(*target_variables))
|
| 66 |
+
st.session_state['target_column']=target_column
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
fig=line_plot_target(st.session_state['cleaned_data'], target=target_column, title=f'{target_column} Over Time')
|
| 70 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
media_channel=list(*[st.session_state['category_dict'][key] for key in st.session_state['category_dict'].keys() if key =='Media'])
|
| 74 |
+
# st.write(media_channel)
|
| 75 |
+
|
| 76 |
+
Non_media_channel=[col for col in st.session_state['cleaned_data'].columns if col not in media_channel]
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
st.markdown('### Annual Data Summary')
|
| 80 |
+
st.dataframe(summary(st.session_state['cleaned_data'], media_channel+[target_column], spends=None,Target=True), use_container_width=True)
|
| 81 |
+
|
| 82 |
+
if st.checkbox('Show raw data'):
|
| 83 |
+
st.write(pd.concat([pd.to_datetime(st.session_state['cleaned_data']['Date']).dt.strftime('%m/%d/%Y'),st.session_state['cleaned_data'].select_dtypes(np.number).applymap(format_numbers)],axis=1))
|
| 84 |
+
col1 = st.columns(1)
|
| 85 |
+
|
| 86 |
+
if "selected_feature" not in st.session_state:
|
| 87 |
+
st.session_state['selected_feature']=None
|
| 88 |
+
|
| 89 |
+
st.header('1. Media Channels')
|
| 90 |
+
|
| 91 |
+
if 'Validation' not in st.session_state:
|
| 92 |
+
st.session_state['Validation']=[]
|
| 93 |
+
|
| 94 |
+
eda_columns=st.columns(2)
|
| 95 |
+
with eda_columns[0]:
|
| 96 |
+
if st.button('Generate Profile Report'):
|
| 97 |
+
pr = st.session_state['cleaned_data'].profile_report()
|
| 98 |
+
|
| 99 |
+
pr.to_file("Profile_Report.html")
|
| 100 |
+
|
| 101 |
+
with open("Profile_Report.html", "rb") as f:
|
| 102 |
+
profile_report_html = f.read()
|
| 103 |
+
b64 = base64.b64encode(profile_report_html).decode()
|
| 104 |
+
href = f'<a href="data:text/html;base64,{b64}" download="Profile_Report.html">Download Profile Report</a>'
|
| 105 |
+
st.markdown(href, unsafe_allow_html=True)
|
| 106 |
+
|
| 107 |
+
with eda_columns[1]:
|
| 108 |
+
if st.button('Generate Sweetviz Report'):
|
| 109 |
+
|
| 110 |
+
def generate_report_with_target(df, target_feature):
|
| 111 |
+
report = sv.analyze([df, "Dataset"], target_feat=target_feature)
|
| 112 |
+
return report
|
| 113 |
+
|
| 114 |
+
report = generate_report_with_target(st.session_state['cleaned_data'], target_feature=target_column)
|
| 115 |
+
report.show_html()
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
selected_media = st.selectbox('Select media', np.unique([Categorised_data[col]['VB'] for col in media_channel]))
|
| 119 |
+
# selected_feature=st.multiselect('Select Metric', df.columns[df.columns.str.contains(selected_media,case=False)])
|
| 120 |
+
st.session_state["selected_feature"]=st.selectbox('Select Metric',[col for col in media_channel if Categorised_data[col]['VB'] in selected_media ] )
|
| 121 |
+
spends_features=[col for col in df.columns if 'spends' in col.lower() or 'cost' in col.lower()]
|
| 122 |
+
spends_feature=[col for col in spends_features if col.split('_')[0] in st.session_state["selected_feature"].split('_')[0]]
|
| 123 |
+
#st.write(spends_features)
|
| 124 |
+
#st.write(spends_feature)
|
| 125 |
+
#st.write(selected_feature)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
val_variables=[col for col in media_channel if col!='Date']
|
| 129 |
+
if len(spends_feature)==0:
|
| 130 |
+
st.warning('No spends varaible available for the selected metric in data')
|
| 131 |
+
|
| 132 |
+
else:
|
| 133 |
+
st.write(f'Selected spends variable {spends_feature[0]} if wrong please name the varaibles properly')
|
| 134 |
+
# Create the dual-axis line plot
|
| 135 |
+
fig_row1 = line_plot(df, x_col='Date', y1_cols=[st.session_state["selected_feature"]], y2_cols=[target_column], title=f'Analysis of {st.session_state["selected_feature"]} and {[target_column][0]} Over Time')
|
| 136 |
+
st.plotly_chart(fig_row1, use_container_width=True)
|
| 137 |
+
st.markdown('### Annual Data Summary')
|
| 138 |
+
st.dataframe(summary(df,[st.session_state["selected_feature"]],spends=spends_feature[0]),use_container_width=True)
|
| 139 |
+
if st.button('Validate'):
|
| 140 |
+
st.session_state['Validation'].append(st.session_state["selected_feature"])
|
| 141 |
+
|
| 142 |
+
if st.checkbox('Validate all'):
|
| 143 |
+
st.session_state['Validation'].extend(val_variables)
|
| 144 |
+
st.success('All media variables are validated ✅')
|
| 145 |
+
if len(set(st.session_state['Validation']).intersection(val_variables))!=len(val_variables):
|
| 146 |
+
#st.write(st.session_state['Validation'])
|
| 147 |
+
validation_data=pd.DataFrame({'Variables':val_variables,
|
| 148 |
+
'Validated':[1 if col in st.session_state['Validation'] else 0 for col in val_variables],
|
| 149 |
+
'Bucket':[Categorised_data[col]['VB'] for col in val_variables]})
|
| 150 |
+
gd=GridOptionsBuilder.from_dataframe(validation_data)
|
| 151 |
+
gd.configure_pagination(enabled=True)
|
| 152 |
+
gd.configure_selection(use_checkbox=True,selection_mode='multiple')
|
| 153 |
+
#gd.configure_selection_toggle_all(None, show_toggle_all=True)
|
| 154 |
+
#gd.configure_columns_auto_size_mode(GridOptionsBuilder.configure_columns)
|
| 155 |
+
gridoptions=gd.build()
|
| 156 |
+
#st.text(st.session_state['Validation'])
|
| 157 |
+
table = AgGrid(validation_data,gridOptions=gridoptions,update_mode=GridUpdateMode.SELECTION_CHANGED,fit_columns_on_grid_load=True)
|
| 158 |
+
#st.table(table)
|
| 159 |
+
selected_rows = table["selected_rows"]
|
| 160 |
+
st.session_state['Validation'].extend([col['Variables'] for col in selected_rows])
|
| 161 |
+
not_validated_variables = [col for col in val_variables if col not in st.session_state["Validation"]]
|
| 162 |
+
if not_validated_variables:
|
| 163 |
+
not_validated_message = f'The following variables are not validated:\n{" , ".join(not_validated_variables)}'
|
| 164 |
+
st.warning(not_validated_message)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
st.header('2. Non Media Variables')
|
| 169 |
+
selected_columns_row = [col for col in df.columns if ("imp" not in col.lower()) and ('cli' not in col.lower() ) and ('spend' not in col.lower()) and col!='Date']
|
| 170 |
+
selected_columns_row4 = st.selectbox('Select Channel',selected_columns_row )
|
| 171 |
+
if not selected_columns_row4:
|
| 172 |
+
st.warning('Please select at least one.')
|
| 173 |
+
else:
|
| 174 |
+
# Create the dual-axis line plot
|
| 175 |
+
fig_row4 = line_plot(df, x_col='Date', y1_cols=[selected_columns_row4], y2_cols=[target_column], title=f'Analysis of {selected_columns_row4} and {target_column} Over Time')
|
| 176 |
+
st.plotly_chart(fig_row4, use_container_width=True)
|
| 177 |
+
selected_non_media=selected_columns_row4
|
| 178 |
+
sum_df = df[['Date', selected_non_media,target_column]]
|
| 179 |
+
sum_df['Year']=pd.to_datetime(df['Date']).dt.year
|
| 180 |
+
#st.dataframe(df)
|
| 181 |
+
#st.dataframe(sum_df.head(2))
|
| 182 |
+
sum_df=sum_df.groupby('Year').agg('sum')
|
| 183 |
+
sum_df.loc['Grand Total']=sum_df.sum()
|
| 184 |
+
sum_df=sum_df.applymap(format_numbers)
|
| 185 |
+
sum_df.fillna('-',inplace=True)
|
| 186 |
+
sum_df=sum_df.replace({"0.0":'-','nan':'-'})
|
| 187 |
+
st.markdown('### Annual Data Summary')
|
| 188 |
+
st.dataframe(sum_df,use_container_width=True)
|
| 189 |
+
|
| 190 |
+
# if st.checkbox('Validate',key='2'):
|
| 191 |
+
# st.session_state['Validation'].append(selected_columns_row4)
|
| 192 |
+
# val_variables=[col for col in media_channel if col!='Date']
|
| 193 |
+
# if st.checkbox('Validate all'):
|
| 194 |
+
# st.session_state['Validation'].extend(val_variables)
|
| 195 |
+
# validation_data=pd.DataFrame({'Variables':val_variables,
|
| 196 |
+
# 'Validated':[1 if col in st.session_state['Validation'] else 0 for col in val_variables],
|
| 197 |
+
# 'Bucket':[Categorised_data[col]['VB'] for col in val_variables]})
|
| 198 |
+
# gd=GridOptionsBuilder.from_dataframe(validation_data)
|
| 199 |
+
# gd.configure_pagination(enabled=True)
|
| 200 |
+
# gd.configure_selection(use_checkbox=True,selection_mode='multiple')
|
| 201 |
+
# #gd.configure_selection_toggle_all(None, show_toggle_all=True)
|
| 202 |
+
# #gd.configure_columns_auto_size_mode(GridOptionsBuilder.configure_columns)
|
| 203 |
+
# gridoptions=gd.build()
|
| 204 |
+
# #st.text(st.session_state['Validation'])
|
| 205 |
+
# table = AgGrid(validation_data,gridOptions=gridoptions,update_mode=GridUpdateMode.SELECTION_CHANGED,fit_columns_on_grid_load=True)
|
| 206 |
+
# #st.table(table)
|
| 207 |
+
# selected_rows = table["selected_rows"]
|
| 208 |
+
# st.session_state['Validation'].extend([col['Variables'] for col in selected_rows])
|
| 209 |
+
# not_validated_variables = [col for col in val_variables if col not in st.session_state["Validation"]]
|
| 210 |
+
# if not_validated_variables:
|
| 211 |
+
# not_validated_message = f'The following variables are not validated:\n{" , ".join(not_validated_variables)}'
|
| 212 |
+
# st.warning(not_validated_message)
|
| 213 |
+
|
| 214 |
+
options = list(df.select_dtypes(np.number).columns)
|
| 215 |
+
st.markdown(' ')
|
| 216 |
+
st.markdown(' ')
|
| 217 |
+
st.markdown('# Exploratory Data Analysis')
|
| 218 |
+
st.markdown(' ')
|
| 219 |
+
|
| 220 |
+
selected_options = []
|
| 221 |
+
num_columns = 4
|
| 222 |
+
num_rows = -(-len(options) // num_columns) # Ceiling division to calculate rows
|
| 223 |
+
|
| 224 |
+
# Create a grid of checkboxes
|
| 225 |
+
st.header('Select Features for Correlation Plot')
|
| 226 |
+
tick=False
|
| 227 |
+
if st.checkbox('Select all'):
|
| 228 |
+
tick=True
|
| 229 |
+
selected_options = []
|
| 230 |
+
for row in range(num_rows):
|
| 231 |
+
cols = st.columns(num_columns)
|
| 232 |
+
for col in cols:
|
| 233 |
+
if options:
|
| 234 |
+
option = options.pop(0)
|
| 235 |
+
selected = col.checkbox(option,value=tick)
|
| 236 |
+
if selected:
|
| 237 |
+
selected_options.append(option)
|
| 238 |
+
# Display selected options
|
| 239 |
+
#st.write('You selected:', selected_options)
|
| 240 |
+
st.pyplot(correlation_plot(df,selected_options,target_column))
|
| 241 |
+
|
pages/2_Transformations.py
ADDED
|
@@ -0,0 +1,612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
MMO Build Sprint 3
|
| 3 |
+
date :
|
| 4 |
+
additions : adding more variables to session state for saved model : random effect, predicted train & test
|
| 5 |
+
'''
|
| 6 |
+
|
| 7 |
+
import streamlit as st
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import plotly.express as px
|
| 10 |
+
import plotly.graph_objects as go
|
| 11 |
+
from Eda_functions import format_numbers
|
| 12 |
+
import numpy as np
|
| 13 |
+
import pickle
|
| 14 |
+
from st_aggrid import AgGrid
|
| 15 |
+
from st_aggrid import GridOptionsBuilder,GridUpdateMode
|
| 16 |
+
from utilities import set_header,load_local_css
|
| 17 |
+
from st_aggrid import GridOptionsBuilder
|
| 18 |
+
import time
|
| 19 |
+
import itertools
|
| 20 |
+
import statsmodels.api as sm
|
| 21 |
+
import numpy as npc
|
| 22 |
+
import re
|
| 23 |
+
import itertools
|
| 24 |
+
from sklearn.metrics import mean_absolute_error, r2_score,mean_absolute_percentage_error
|
| 25 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 26 |
+
import os
|
| 27 |
+
import matplotlib.pyplot as plt
|
| 28 |
+
from statsmodels.stats.outliers_influence import variance_inflation_factor
|
| 29 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
| 30 |
+
import statsmodels.api as sm
|
| 31 |
+
import statsmodels.formula.api as smf
|
| 32 |
+
|
| 33 |
+
from datetime import datetime
|
| 34 |
+
import seaborn as sns
|
| 35 |
+
from Data_prep_functions import *
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_random_effects(media_data, panel_col, mdf):
|
| 39 |
+
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
|
| 40 |
+
|
| 41 |
+
for i, market in enumerate(media_data[panel_col].unique()):
|
| 42 |
+
print(i, end='\r')
|
| 43 |
+
intercept = mdf.random_effects[market].values[0]
|
| 44 |
+
random_eff_df.loc[i, 'random_effect'] = intercept
|
| 45 |
+
random_eff_df.loc[i, panel_col] = market
|
| 46 |
+
|
| 47 |
+
return random_eff_df
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def mdf_predict(X_df, mdf, random_eff_df) :
|
| 51 |
+
X=X_df.copy()
|
| 52 |
+
X['fixed_effect'] = mdf.predict(X)
|
| 53 |
+
X=pd.merge(X, random_eff_df, on=panel_col, how='left')
|
| 54 |
+
X['pred'] = X['fixed_effect'] + X['random_effect']
|
| 55 |
+
# X.to_csv('Test/megred_df.csv',index=False)
|
| 56 |
+
X.drop(columns=['fixed_effect', 'random_effect'], inplace=True)
|
| 57 |
+
return X['pred']
|
| 58 |
+
|
| 59 |
+
st.set_page_config(
|
| 60 |
+
page_title="Model Build",
|
| 61 |
+
page_icon=":shark:",
|
| 62 |
+
layout="wide",
|
| 63 |
+
initial_sidebar_state='collapsed'
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
load_local_css('styles.css')
|
| 67 |
+
set_header()
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
st.title('1. Build Your Model')
|
| 71 |
+
|
| 72 |
+
# set the panel column
|
| 73 |
+
date_col = 'date'
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
media_data=pd.read_csv(r'upf_data_converted.csv')
|
| 77 |
+
# with open("Pickle_files/main_df",'rb') as f:
|
| 78 |
+
# media_data= pickle.load(f)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
media_data.columns=[i.lower().strip().replace(' ','_').replace('-','').replace(':','').replace("__", "_") for i in media_data.columns]
|
| 82 |
+
#st.write(media_data.columns)
|
| 83 |
+
#media_data.drop(['indicacao_impressions','infleux_impressions','influencer_impressions'],axis=1,inplace=True)
|
| 84 |
+
target_col = 'total_approved_accounts_revenue'
|
| 85 |
+
# st.write(media_data.columns)
|
| 86 |
+
media_data.sort_values(date_col, inplace=True)
|
| 87 |
+
media_data.reset_index(drop=True,inplace=True)
|
| 88 |
+
|
| 89 |
+
date=media_data[date_col]
|
| 90 |
+
st.session_state['date']=date
|
| 91 |
+
revenue=media_data[target_col]
|
| 92 |
+
media_data.drop([target_col],axis=1,inplace=True)
|
| 93 |
+
media_data.drop([date_col],axis=1,inplace=True)
|
| 94 |
+
media_data.reset_index(drop=True,inplace=True)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
if st.toggle('Apply Transformations on DMA/Panel Level'):
|
| 98 |
+
dma=st.selectbox('Select the Level of data ',[ col for col in media_data.columns if col.lower() in ['dma','panel', 'markets']])
|
| 99 |
+
panel_col= dma
|
| 100 |
+
|
| 101 |
+
else:
|
| 102 |
+
#""" code to aggregate data on date """
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
dma=None
|
| 106 |
+
|
| 107 |
+
# dma_dict={ dm:media_data[media_data[dma]==dm] for dm in media_data[dma].unique()}
|
| 108 |
+
# st.write(dma_dict)
|
| 109 |
+
|
| 110 |
+
st.markdown('## Select the Range of Transformations')
|
| 111 |
+
columns = st.columns(2)
|
| 112 |
+
old_shape=media_data.shape
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
if "old_shape" not in st.session_state:
|
| 116 |
+
st.session_state['old_shape']=old_shape
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
with columns[0]:
|
| 120 |
+
slider_value_adstock = st.slider('Select Adstock Range (only applied to media)', 0.0, 1.0, (0.2, 0.4), step=0.1, format="%.2f")
|
| 121 |
+
with columns[1]:
|
| 122 |
+
slider_value_lag = st.slider('Select Lag Range (applied to media, seasonal, macroeconomic variables)', 1, 7, (1, 3), step=1)
|
| 123 |
+
|
| 124 |
+
# with columns[2]:
|
| 125 |
+
# slider_value_power=st.slider('Select Power range (only applied to media )',0,4,(1,2),step=1)
|
| 126 |
+
|
| 127 |
+
# with columns[1]:
|
| 128 |
+
# st.number_input('Select the range of half saturation point ',min_value=1,max_value=5)
|
| 129 |
+
# st.number_input('Select the range of ')
|
| 130 |
+
|
| 131 |
+
# Section 1 - Transformations Functions
|
| 132 |
+
def lag(data,features,lags,dma=None):
|
| 133 |
+
if dma:
|
| 134 |
+
|
| 135 |
+
transformed_data=pd.concat([data.groupby([dma])[features].shift(lag).add_suffix(f'_lag_{lag}') for lag in lags],axis=1)
|
| 136 |
+
transformed_data=transformed_data.fillna(method='bfill')
|
| 137 |
+
return pd.concat([transformed_data,data],axis=1)
|
| 138 |
+
|
| 139 |
+
else:
|
| 140 |
+
|
| 141 |
+
#''' data should be aggregated on date'''
|
| 142 |
+
|
| 143 |
+
transformed_data=pd.concat([data[features].shift(lag).add_suffix(f'_lag_{lag}') for lag in lags],axis=1)
|
| 144 |
+
transformed_data=transformed_data.fillna(method='bfill')
|
| 145 |
+
|
| 146 |
+
return pd.concat([transformed_data,data],axis=1)
|
| 147 |
+
|
| 148 |
+
#adstock
|
| 149 |
+
def adstock(df, alphas, cutoff, features,dma=None):
|
| 150 |
+
# st.write(features)
|
| 151 |
+
|
| 152 |
+
if dma:
|
| 153 |
+
transformed_data=pd.DataFrame()
|
| 154 |
+
for d in df[dma].unique():
|
| 155 |
+
dma_sub_df = df[df[dma] == d]
|
| 156 |
+
n = len(dma_sub_df)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
weights = np.array([[[alpha**(i-j) if i >= j and j >= i-cutoff else 0. for j in range(n)] for i in range(n)] for alpha in alphas])
|
| 160 |
+
X = dma_sub_df[features].to_numpy()
|
| 161 |
+
|
| 162 |
+
res = pd.DataFrame(np.hstack(weights @ X),
|
| 163 |
+
columns=[f'{col}_adstock_{alpha}' for alpha in alphas for col in features])
|
| 164 |
+
|
| 165 |
+
transformed_data=pd.concat([transformed_data,res],axis=0)
|
| 166 |
+
transformed_data.reset_index(drop=True,inplace=True)
|
| 167 |
+
return pd.concat([transformed_data,df],axis=1)
|
| 168 |
+
|
| 169 |
+
else:
|
| 170 |
+
|
| 171 |
+
n = len(df)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
weights = np.array([[[alpha**(i-j) if i >= j and j >= i-cutoff else 0. for j in range(n)] for i in range(n)] for alpha in alphas])
|
| 175 |
+
|
| 176 |
+
X = df[features].to_numpy()
|
| 177 |
+
res = pd.DataFrame(np.hstack(weights @ X),
|
| 178 |
+
columns=[f'{col}_adstock_{alpha}' for alpha in alphas for col in features])
|
| 179 |
+
return pd.concat([res,df],axis=1)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
# Section 2 - Begin Transformations
|
| 185 |
+
|
| 186 |
+
if 'media_data' not in st.session_state:
|
| 187 |
+
|
| 188 |
+
st.session_state['media_data']=pd.DataFrame()
|
| 189 |
+
|
| 190 |
+
# Sprint3 additions
|
| 191 |
+
if 'random_effects' not in st.session_state:
|
| 192 |
+
st.session_state['random_effects']=pd.DataFrame()
|
| 193 |
+
if 'pred_train' not in st.session_state:
|
| 194 |
+
st.session_state['pred_train'] = []
|
| 195 |
+
if 'pred_test' not in st.session_state:
|
| 196 |
+
st.session_state['pred_test'] = []
|
| 197 |
+
# end of Sprint3 additions
|
| 198 |
+
|
| 199 |
+
# variables_to_be_transformed=[col for col in media_data.columns if col.lower() not in ['dma','panel'] ] # change for buckets
|
| 200 |
+
variables_to_be_transformed=[col for col in media_data.columns if '_clicks' in col.lower() or '_impress' in col.lower()] # srishti - change
|
| 201 |
+
# st.write(variables_to_be_transformed)
|
| 202 |
+
# st.write(media_data[variables_to_be_transformed].dtypes)
|
| 203 |
+
|
| 204 |
+
with columns[0]:
|
| 205 |
+
if st.button('Apply Transformations'):
|
| 206 |
+
with st.spinner('Applying Transformations'):
|
| 207 |
+
transformed_data_lag=lag(media_data,features=variables_to_be_transformed,lags=np.arange(slider_value_lag[0],slider_value_lag[1]+1,1),dma=dma)
|
| 208 |
+
|
| 209 |
+
# variables_to_be_transformed=[col for col in list(transformed_data_lag.columns) if col not in ['Date','DMA','Panel']] #change for buckets
|
| 210 |
+
variables_to_be_transformed = [col for col in media_data.columns if
|
| 211 |
+
'_clicks' in col.lower() or '_impress' in col.lower()] # srishti - change
|
| 212 |
+
|
| 213 |
+
transformed_data_adstock=adstock(df=transformed_data_lag, alphas=np.arange(slider_value_adstock[0],slider_value_adstock[1],0.1), cutoff=8, features=variables_to_be_transformed,dma=dma)
|
| 214 |
+
|
| 215 |
+
# st.success('Done')
|
| 216 |
+
st.success("Transformations complete!")
|
| 217 |
+
|
| 218 |
+
st.write(f'old shape {old_shape}, new shape {transformed_data_adstock.shape}')
|
| 219 |
+
# st.write(media_data.head(10))
|
| 220 |
+
# st.write(transformed_data_adstock.head(10))
|
| 221 |
+
|
| 222 |
+
transformed_data_adstock.columns = [c.replace(".","_") for c in transformed_data_adstock.columns] # srishti
|
| 223 |
+
# st.write(transformed_data_adstock.columns)
|
| 224 |
+
st.session_state['media_data']=transformed_data_adstock # srishti
|
| 225 |
+
|
| 226 |
+
# with st.spinner('Applying Transformations'):
|
| 227 |
+
# time.sleep(2)
|
| 228 |
+
# st.success("Transformations complete!")
|
| 229 |
+
|
| 230 |
+
# if st.session_state['media_data'].shape[1]>old_shape[1]:
|
| 231 |
+
# with columns[0]:
|
| 232 |
+
# st.write(f'Total no.of variables before transformation: {old_shape[1]}, Total no.of variables after transformation: {st.session_state["media_data"].shape[1]}')
|
| 233 |
+
#st.write(f'Total no.of variables after transformation: {st.session_state["media_data"].shape[1]}')
|
| 234 |
+
|
| 235 |
+
# Section 3 - Create combinations
|
| 236 |
+
|
| 237 |
+
# bucket=['paid_search', 'kwai','indicacao','infleux', 'influencer','FB: Level Achieved - Tier 1 Impressions',
|
| 238 |
+
# ' FB: Level Achieved - Tier 2 Impressions','paid_social_others',
|
| 239 |
+
# ' GA App: Will And Cid Pequena Baixo Risco Clicks',
|
| 240 |
+
# 'digital_tactic_others',"programmatic"
|
| 241 |
+
# ]
|
| 242 |
+
|
| 243 |
+
# srishti - bucket names changed
|
| 244 |
+
bucket=['paid_search', 'kwai','indicacao','infleux', 'influencer','fb_level_achieved_tier_2',
|
| 245 |
+
'fb_level_achieved_tier_1','paid_social_others',
|
| 246 |
+
'ga_app',
|
| 247 |
+
'digital_tactic_others',"programmatic"
|
| 248 |
+
]
|
| 249 |
+
|
| 250 |
+
with columns[1]:
|
| 251 |
+
if st.button('Create Combinations of Variables'):
|
| 252 |
+
|
| 253 |
+
top_3_correlated_features=[]
|
| 254 |
+
# for col in st.session_state['media_data'].columns[:19]:
|
| 255 |
+
original_cols = [c for c in st.session_state['media_data'].columns if "_clicks" in c.lower() or "_impressions" in c.lower()]
|
| 256 |
+
original_cols = [c for c in original_cols if "_lag" not in c.lower() and "_adstock" not in c.lower()]
|
| 257 |
+
# st.write(original_cols)
|
| 258 |
+
|
| 259 |
+
# for col in st.session_state['media_data'].columns[:19]:
|
| 260 |
+
for col in original_cols: # srishti - new
|
| 261 |
+
corr_df=pd.concat([st.session_state['media_data'].filter(regex=col),
|
| 262 |
+
revenue],axis=1).corr()[target_col].iloc[:-1]
|
| 263 |
+
top_3_correlated_features.append(list(corr_df.sort_values(ascending=False).head(2).index))
|
| 264 |
+
# st.write(col, top_3_correlated_features)
|
| 265 |
+
flattened_list = [item for sublist in top_3_correlated_features for item in sublist]
|
| 266 |
+
# all_features_set={var:[col for col in flattened_list if var in col] for var in bucket}
|
| 267 |
+
all_features_set={var:[col for col in flattened_list if var in col] for var in bucket if len([col for col in flattened_list if var in col])>0} # srishti
|
| 268 |
+
|
| 269 |
+
channels_all=[values for values in all_features_set.values()]
|
| 270 |
+
# st.write(channels_all)
|
| 271 |
+
st.session_state['combinations'] = list(itertools.product(*channels_all))
|
| 272 |
+
# if 'combinations' not in st.session_state:
|
| 273 |
+
# st.session_state['combinations']=combinations_all
|
| 274 |
+
|
| 275 |
+
st.session_state['final_selection']=st.session_state['combinations']
|
| 276 |
+
st.success('Done')
|
| 277 |
+
# st.write(f"{len(st.session_state['combinations'])} combinations created")
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
revenue.reset_index(drop=True,inplace=True)
|
| 281 |
+
if 'Model_results' not in st.session_state:
|
| 282 |
+
st.session_state['Model_results']={'Model_object':[],
|
| 283 |
+
'Model_iteration':[],
|
| 284 |
+
'Feature_set':[],
|
| 285 |
+
'MAPE':[],
|
| 286 |
+
'R2':[],
|
| 287 |
+
'ADJR2':[]
|
| 288 |
+
}
|
| 289 |
+
|
| 290 |
+
def reset_model_result_dct():
|
| 291 |
+
st.session_state['Model_results']={'Model_object':[],
|
| 292 |
+
'Model_iteration':[],
|
| 293 |
+
'Feature_set':[],
|
| 294 |
+
'MAPE':[],
|
| 295 |
+
'R2':[],
|
| 296 |
+
'ADJR2':[]
|
| 297 |
+
}
|
| 298 |
+
|
| 299 |
+
# if st.button('Build Model'):
|
| 300 |
+
if 'iterations' not in st.session_state:
|
| 301 |
+
st.session_state['iterations']=0
|
| 302 |
+
# st.write("1",st.session_state["final_selection"])
|
| 303 |
+
|
| 304 |
+
if 'final_selection' not in st.session_state:
|
| 305 |
+
st.session_state['final_selection']=False
|
| 306 |
+
|
| 307 |
+
save_path = r"Model/"
|
| 308 |
+
with columns[1]:
|
| 309 |
+
if st.session_state['final_selection']:
|
| 310 |
+
st.write(f'Total combinations created {format_numbers(len(st.session_state["final_selection"]))}')
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
if st.checkbox('Build all iterations'):
|
| 314 |
+
iterations=len(st.session_state['final_selection'])
|
| 315 |
+
else:
|
| 316 |
+
iterations = st.number_input('Select the number of iterations to perform', min_value=0, step=100, value=st.session_state['iterations'],on_change=reset_model_result_dct)
|
| 317 |
+
# st.write("iterations=", iterations)
|
| 318 |
+
|
| 319 |
+
if st.button('Build Model',on_click=reset_model_result_dct):
|
| 320 |
+
st.session_state['iterations']=iterations
|
| 321 |
+
# st.write("2",st.session_state["final_selection"])
|
| 322 |
+
|
| 323 |
+
# Section 4 - Model
|
| 324 |
+
|
| 325 |
+
st.session_state['media_data']=st.session_state['media_data'].fillna(method='ffill')
|
| 326 |
+
st.markdown(
|
| 327 |
+
'Data Split -- Training Period: May 9th, 2023 - October 5th,2023 , Testing Period: October 6th, 2023 - November 7th, 2023 ')
|
| 328 |
+
progress_bar = st.progress(0) # Initialize the progress bar
|
| 329 |
+
# time_remaining_text = st.empty() # Create an empty space for time remaining text
|
| 330 |
+
start_time = time.time() # Record the start time
|
| 331 |
+
progress_text = st.empty()
|
| 332 |
+
# time_elapsed_text = st.empty()
|
| 333 |
+
# for i, selected_features in enumerate(st.session_state["final_selection"][40000:40000 + int(iterations)]):
|
| 334 |
+
# st.write(st.session_state["final_selection"])
|
| 335 |
+
# for i, selected_features in enumerate(st.session_state["final_selection"]):
|
| 336 |
+
for i, selected_features in enumerate(st.session_state["final_selection"][0:int(iterations)]): # srishti
|
| 337 |
+
df = st.session_state['media_data']
|
| 338 |
+
|
| 339 |
+
fet = [var for var in selected_features if len(var) > 0]
|
| 340 |
+
inp_vars_str = " + ".join(fet) # new
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
X = df[fet]
|
| 344 |
+
y = revenue
|
| 345 |
+
ss = MinMaxScaler()
|
| 346 |
+
X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
|
| 347 |
+
# X = sm.add_constant(X)
|
| 348 |
+
|
| 349 |
+
X['total_approved_accounts_revenue'] = revenue # Sprint2
|
| 350 |
+
X[panel_col] = df[panel_col] # Sprint2
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
X_train=X.iloc[:8000]
|
| 355 |
+
X_test=X.iloc[8000:]
|
| 356 |
+
y_train=y.iloc[:8000]
|
| 357 |
+
y_test=y.iloc[8000:]
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
md = smf.mixedlm("total_approved_accounts_revenue ~ {}".format(inp_vars_str),
|
| 362 |
+
data=X_train[['total_approved_accounts_revenue'] + fet],
|
| 363 |
+
groups=X_train[panel_col])
|
| 364 |
+
mdf = md.fit()
|
| 365 |
+
predicted_values = mdf.fittedvalues
|
| 366 |
+
|
| 367 |
+
# st.write(fet)
|
| 368 |
+
# positive_coeff=fet
|
| 369 |
+
# negetive_coeff=[]
|
| 370 |
+
|
| 371 |
+
coefficients = mdf.fe_params.to_dict()
|
| 372 |
+
model_possitive = [col for col in coefficients.keys() if coefficients[col] > 0]
|
| 373 |
+
# st.write(positive_coeff)
|
| 374 |
+
# st.write(model_possitive)
|
| 375 |
+
pvalues = [var for var in list(mdf.pvalues) if var <= 0.06]
|
| 376 |
+
|
| 377 |
+
# if (len(model_possitive) / len(selected_features)) > 0.9 and (len(pvalues) / len(selected_features)) >= 0.8:
|
| 378 |
+
if (len(model_possitive) / len(selected_features)) > 0 and (len(pvalues) / len(selected_features)) >= 0: # srishti - changed just for testing, revert later
|
| 379 |
+
# predicted_values = model.predict(X_train)
|
| 380 |
+
mape = mean_absolute_percentage_error(y_train, predicted_values)
|
| 381 |
+
r2 = r2_score(y_train, predicted_values)
|
| 382 |
+
adjr2 = 1 - (1 - r2) * (len(y_train) - 1) / (len(y_train) - len(selected_features) - 1)
|
| 383 |
+
|
| 384 |
+
filename = os.path.join(save_path, f"model_{i}.pkl")
|
| 385 |
+
with open(filename, "wb") as f:
|
| 386 |
+
pickle.dump(mdf, f)
|
| 387 |
+
# with open(r"C:\Users\ManojP\Documents\MMM\simopt\Model\model.pkl", 'rb') as file:
|
| 388 |
+
# model = pickle.load(file)
|
| 389 |
+
|
| 390 |
+
st.session_state['Model_results']['Model_object'].append(filename)
|
| 391 |
+
st.session_state['Model_results']['Model_iteration'].append(i)
|
| 392 |
+
st.session_state['Model_results']['Feature_set'].append(fet)
|
| 393 |
+
st.session_state['Model_results']['MAPE'].append(mape)
|
| 394 |
+
st.session_state['Model_results']['R2'].append(r2)
|
| 395 |
+
st.session_state['Model_results']['ADJR2'].append(adjr2)
|
| 396 |
+
|
| 397 |
+
current_time = time.time()
|
| 398 |
+
time_taken = current_time - start_time
|
| 399 |
+
time_elapsed_minutes = time_taken / 60
|
| 400 |
+
completed_iterations_text = f"{i + 1}/{iterations}"
|
| 401 |
+
progress_bar.progress((i + 1) / int(iterations))
|
| 402 |
+
progress_text.text(f'Completed iterations: {completed_iterations_text},Time Elapsed (min): {time_elapsed_minutes:.2f}')
|
| 403 |
+
|
| 404 |
+
st.write(f'Out of {st.session_state["iterations"]} iterations : {len(st.session_state["Model_results"]["Model_object"])} valid models')
|
| 405 |
+
pd.DataFrame(st.session_state['Model_results']).to_csv('model_output.csv')
|
| 406 |
+
|
| 407 |
+
def to_percentage(value):
|
| 408 |
+
return f'{value * 100:.1f}%'
|
| 409 |
+
|
| 410 |
+
## Section 5 - Select Model
|
| 411 |
+
st.title('2. Select Models')
|
| 412 |
+
if 'tick' not in st.session_state:
|
| 413 |
+
st.session_state['tick']=False
|
| 414 |
+
if st.checkbox('Show results of top 10 models (based on MAPE and Adj. R2)',value=st.session_state['tick']):
|
| 415 |
+
st.session_state['tick']=True
|
| 416 |
+
st.write('Select one model iteration to generate performance metrics for it:')
|
| 417 |
+
data=pd.DataFrame(st.session_state['Model_results'])
|
| 418 |
+
data.sort_values(by=['MAPE'],ascending=False,inplace=True)
|
| 419 |
+
data.drop_duplicates(subset='Model_iteration',inplace=True)
|
| 420 |
+
top_10=data.head(10)
|
| 421 |
+
top_10['Rank']=np.arange(1,len(top_10)+1,1)
|
| 422 |
+
top_10[['MAPE','R2','ADJR2']]=np.round(top_10[['MAPE','R2','ADJR2']],4).applymap(to_percentage)
|
| 423 |
+
top_10_table = top_10[['Rank','Model_iteration','MAPE','ADJR2','R2']]
|
| 424 |
+
#top_10_table.columns=[['Rank','Model Iteration Index','MAPE','Adjusted R2','R2']]
|
| 425 |
+
gd=GridOptionsBuilder.from_dataframe(top_10_table)
|
| 426 |
+
gd.configure_pagination(enabled=True)
|
| 427 |
+
gd.configure_selection(use_checkbox=True)
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
gridoptions=gd.build()
|
| 431 |
+
|
| 432 |
+
table = AgGrid(top_10,gridOptions=gridoptions,update_mode=GridUpdateMode.SELECTION_CHANGED)
|
| 433 |
+
|
| 434 |
+
selected_rows=table.selected_rows
|
| 435 |
+
# if st.session_state["selected_rows"] != selected_rows:
|
| 436 |
+
# st.session_state["build_rc_cb"] = False
|
| 437 |
+
st.session_state["selected_rows"] = selected_rows
|
| 438 |
+
if 'Model' not in st.session_state:
|
| 439 |
+
st.session_state['Model']={}
|
| 440 |
+
|
| 441 |
+
# Section 6 - Display Results
|
| 442 |
+
|
| 443 |
+
if len(selected_rows)>0:
|
| 444 |
+
st.header('2.1 Results Summary')
|
| 445 |
+
|
| 446 |
+
model_object=data[data['Model_iteration']==selected_rows[0]['Model_iteration']]['Model_object']
|
| 447 |
+
features_set=data[data['Model_iteration']==selected_rows[0]['Model_iteration']]['Feature_set']
|
| 448 |
+
|
| 449 |
+
with open(str(model_object.values[0]), 'rb') as file:
|
| 450 |
+
# print(file)
|
| 451 |
+
model = pickle.load(file)
|
| 452 |
+
st.write(model.summary())
|
| 453 |
+
st.header('2.2 Actual vs. Predicted Plot')
|
| 454 |
+
|
| 455 |
+
df=st.session_state['media_data']
|
| 456 |
+
X=df[features_set.values[0]]
|
| 457 |
+
# X = sm.add_constant(X)
|
| 458 |
+
y=revenue
|
| 459 |
+
|
| 460 |
+
ss = MinMaxScaler()
|
| 461 |
+
X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
|
| 462 |
+
|
| 463 |
+
# Sprint2 changes
|
| 464 |
+
X['total_approved_accounts_revenue'] = revenue # new
|
| 465 |
+
X[panel_col] = df[panel_col]
|
| 466 |
+
X[date_col]=date
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
X_train=X.iloc[:8000]
|
| 471 |
+
X_test=X.iloc[8000:].reset_index(drop=True)
|
| 472 |
+
y_train=y.iloc[:8000]
|
| 473 |
+
y_test=y.iloc[8000:].reset_index(drop=True)
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
random_eff_df = get_random_effects(media_data, panel_col, model)
|
| 477 |
+
train_pred = model.fittedvalues
|
| 478 |
+
test_pred = mdf_predict(X_test, model, random_eff_df)
|
| 479 |
+
print("__"*20, test_pred.isna().sum())
|
| 480 |
+
|
| 481 |
+
# save x test to test - srishti
|
| 482 |
+
x_test_to_save = X_test.copy()
|
| 483 |
+
x_test_to_save['Actuals'] = y_test
|
| 484 |
+
x_test_to_save['Predictions'] = test_pred
|
| 485 |
+
|
| 486 |
+
x_train_to_save=X_train.copy()
|
| 487 |
+
x_train_to_save['Actuals'] = y_train
|
| 488 |
+
x_train_to_save['Predictions'] = train_pred
|
| 489 |
+
|
| 490 |
+
x_train_to_save.to_csv('Test/x_train_to_save.csv',index=False)
|
| 491 |
+
x_test_to_save.to_csv('Test/x_test_to_save.csv',index=False)
|
| 492 |
+
|
| 493 |
+
st.session_state['X']=X_train
|
| 494 |
+
st.session_state['features_set']=features_set.values[0]
|
| 495 |
+
print("**"*20,"selected model features : ",features_set.values[0])
|
| 496 |
+
metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(X_train[date_col], y_train, train_pred, model,target_column='Revenue',is_panel=True) # Sprint2
|
| 497 |
+
|
| 498 |
+
st.plotly_chart(actual_vs_predicted_plot,use_container_width=True)
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
st.markdown('## 2.3 Residual Analysis')
|
| 503 |
+
columns=st.columns(2)
|
| 504 |
+
with columns[0]:
|
| 505 |
+
fig=plot_residual_predicted(y_train,train_pred,X_train) # Sprint2
|
| 506 |
+
st.plotly_chart(fig)
|
| 507 |
+
|
| 508 |
+
with columns[1]:
|
| 509 |
+
st.empty()
|
| 510 |
+
fig = qqplot(y_train,train_pred) # Sprint2
|
| 511 |
+
st.plotly_chart(fig)
|
| 512 |
+
|
| 513 |
+
with columns[0]:
|
| 514 |
+
fig=residual_distribution(y_train,train_pred) # Sprint2
|
| 515 |
+
st.pyplot(fig)
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
vif_data = pd.DataFrame()
|
| 520 |
+
# X=X.drop('const',axis=1)
|
| 521 |
+
X_train_with_panels = X_train.copy() # Sprint2 -- creating a copy of xtrain. Later deleting panel, target & date from xtrain
|
| 522 |
+
X_train.drop(columns=[target_col, panel_col, date_col], inplace=True) # Sprint2
|
| 523 |
+
vif_data["Variable"] = X_train.columns
|
| 524 |
+
vif_data["VIF"] = [variance_inflation_factor(X_train.values, i) for i in range(X_train.shape[1])]
|
| 525 |
+
vif_data.sort_values(by=['VIF'],ascending=False,inplace=True)
|
| 526 |
+
vif_data=np.round(vif_data)
|
| 527 |
+
vif_data['VIF']=vif_data['VIF'].astype(float)
|
| 528 |
+
st.header('2.4 Variance Inflation Factor (VIF)')
|
| 529 |
+
#st.dataframe(vif_data)
|
| 530 |
+
color_mapping = {
|
| 531 |
+
'darkgreen': (vif_data['VIF'] < 3),
|
| 532 |
+
'orange': (vif_data['VIF'] >= 3) & (vif_data['VIF'] <= 10),
|
| 533 |
+
'darkred': (vif_data['VIF'] > 10)
|
| 534 |
+
}
|
| 535 |
+
|
| 536 |
+
# Create a horizontal bar plot
|
| 537 |
+
fig, ax = plt.subplots()
|
| 538 |
+
fig.set_figwidth(10) # Adjust the width of the figure as needed
|
| 539 |
+
|
| 540 |
+
# Sort the bars by descending VIF values
|
| 541 |
+
vif_data = vif_data.sort_values(by='VIF', ascending=False)
|
| 542 |
+
|
| 543 |
+
# Iterate through the color mapping and plot bars with corresponding colors
|
| 544 |
+
for color, condition in color_mapping.items():
|
| 545 |
+
subset = vif_data[condition]
|
| 546 |
+
bars = ax.barh(subset["Variable"], subset["VIF"], color=color, label=color)
|
| 547 |
+
|
| 548 |
+
# Add text annotations on top of the bars
|
| 549 |
+
for bar in bars:
|
| 550 |
+
width = bar.get_width()
|
| 551 |
+
ax.annotate(f'{width:}', xy=(width, bar.get_y() + bar.get_height() / 2), xytext=(5, 0),
|
| 552 |
+
textcoords='offset points', va='center')
|
| 553 |
+
|
| 554 |
+
# Customize the plot
|
| 555 |
+
ax.set_xlabel('VIF Values')
|
| 556 |
+
#ax.set_title('2.4 Variance Inflation Factor (VIF)')
|
| 557 |
+
#ax.legend(loc='upper right')
|
| 558 |
+
|
| 559 |
+
# Display the plot in Streamlit
|
| 560 |
+
st.pyplot(fig)
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
with st.expander('Results Summary Test data'):
|
| 565 |
+
# ss = MinMaxScaler()
|
| 566 |
+
# X_test = pd.DataFrame(ss.fit_transform(X_test), columns=X_test.columns)
|
| 567 |
+
st.header('2.2 Actual vs. Predicted Plot')
|
| 568 |
+
|
| 569 |
+
metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(X_test[date_col], y_test, test_pred, model,target_column='Revenue',is_panel=True) # Sprint2
|
| 570 |
+
|
| 571 |
+
st.plotly_chart(actual_vs_predicted_plot,use_container_width=True)
|
| 572 |
+
|
| 573 |
+
st.markdown('## 2.3 Residual Analysis')
|
| 574 |
+
columns=st.columns(2)
|
| 575 |
+
with columns[0]:
|
| 576 |
+
fig=plot_residual_predicted(revenue,test_pred,X_test) # Sprint2
|
| 577 |
+
st.plotly_chart(fig)
|
| 578 |
+
|
| 579 |
+
with columns[1]:
|
| 580 |
+
st.empty()
|
| 581 |
+
fig = qqplot(revenue,test_pred) # Sprint2
|
| 582 |
+
st.plotly_chart(fig)
|
| 583 |
+
|
| 584 |
+
with columns[0]:
|
| 585 |
+
fig=residual_distribution(revenue,test_pred) # Sprint2
|
| 586 |
+
st.pyplot(fig)
|
| 587 |
+
|
| 588 |
+
value=False
|
| 589 |
+
if st.checkbox('Save this model to tune',key='build_rc_cb'):
|
| 590 |
+
mod_name=st.text_input('Enter model name')
|
| 591 |
+
if len(mod_name)>0:
|
| 592 |
+
st.session_state['Model'][mod_name]={"Model_object":model,'feature_set':st.session_state['features_set'],'X_train':X_train_with_panels}
|
| 593 |
+
st.session_state['X_train']=X_train_with_panels
|
| 594 |
+
st.session_state['X_test']=X_test
|
| 595 |
+
st.session_state['y_train']=y_train
|
| 596 |
+
st.session_state['y_test']=y_test
|
| 597 |
+
|
| 598 |
+
# Sprint3 additions
|
| 599 |
+
random_eff_df= get_random_effects(media_data, panel_col, model)
|
| 600 |
+
st.session_state['random_effects']=random_eff_df
|
| 601 |
+
|
| 602 |
+
st.session_state['pred_train']=model.fittedvalues
|
| 603 |
+
st.session_state['pred_test']=mdf_predict(X_test, model, random_eff_df)
|
| 604 |
+
# End of Sprint3 additions
|
| 605 |
+
|
| 606 |
+
with open("best_models.pkl", "wb") as f:
|
| 607 |
+
pickle.dump(st.session_state['Model'], f)
|
| 608 |
+
st.success('Model saved! Proceed to the next page to tune the model')
|
| 609 |
+
value=False
|
| 610 |
+
|
| 611 |
+
# st.write(st.session_state['Model'][mod_name]['X_train'].columns)
|
| 612 |
+
# st.write(st.session_state['X_test'].columns)
|
pages/3_Model_Tuning.py
ADDED
|
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
MMO Build Sprint 3
|
| 3 |
+
date :
|
| 4 |
+
changes : capability to tune MixedLM as well as simple LR in the same page
|
| 5 |
+
'''
|
| 6 |
+
|
| 7 |
+
import streamlit as st
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from Eda_functions import format_numbers
|
| 10 |
+
import pickle
|
| 11 |
+
from utilities import set_header,load_local_css
|
| 12 |
+
import statsmodels.api as sm
|
| 13 |
+
import re
|
| 14 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
from statsmodels.stats.outliers_influence import variance_inflation_factor
|
| 17 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
| 18 |
+
import statsmodels.formula.api as smf
|
| 19 |
+
from Data_prep_functions import *
|
| 20 |
+
|
| 21 |
+
for i in ["model_tuned", "X_train_tuned", "X_test_tuned", "tuned_model_features"] :
|
| 22 |
+
if i not in st.session_state :
|
| 23 |
+
st.session_state[i] = None
|
| 24 |
+
|
| 25 |
+
st.set_page_config(
|
| 26 |
+
page_title="Model Tuning",
|
| 27 |
+
page_icon=":shark:",
|
| 28 |
+
layout="wide",
|
| 29 |
+
initial_sidebar_state='collapsed'
|
| 30 |
+
)
|
| 31 |
+
load_local_css('styles.css')
|
| 32 |
+
set_header()
|
| 33 |
+
|
| 34 |
+
# Sprint3
|
| 35 |
+
is_panel= True
|
| 36 |
+
panel_col= 'dma' # set the panel column
|
| 37 |
+
date_col = 'date'
|
| 38 |
+
target_col = 'total_approved_accounts_revenue'
|
| 39 |
+
|
| 40 |
+
st.title('1. Model Tuning')
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
if "X_train" not in st.session_state:
|
| 44 |
+
st.error(
|
| 45 |
+
"Oops! It seems there are no saved models available. Please build and save a model from the previous page to proceed.")
|
| 46 |
+
st.stop()
|
| 47 |
+
X_train=st.session_state['X_train']
|
| 48 |
+
X_test=st.session_state['X_test']
|
| 49 |
+
y_train=st.session_state['y_train']
|
| 50 |
+
y_test=st.session_state['y_test']
|
| 51 |
+
df=st.session_state['media_data']
|
| 52 |
+
|
| 53 |
+
# st.write(X_train.columns)
|
| 54 |
+
# st.write(X_test.columns)
|
| 55 |
+
|
| 56 |
+
with open("best_models.pkl", 'rb') as file:
|
| 57 |
+
model_dict= pickle.load(file)
|
| 58 |
+
|
| 59 |
+
if 'selected_model' not in st.session_state:
|
| 60 |
+
st.session_state['selected_model']=0
|
| 61 |
+
|
| 62 |
+
# st.write(model_dict[st.session_state["selected_model"]]['X_train'].columns)
|
| 63 |
+
|
| 64 |
+
st.markdown('### 1.1 Event Flags')
|
| 65 |
+
st.markdown('Helps in quantifying the impact of specific occurrences of events')
|
| 66 |
+
with st.expander('Apply Event Flags'):
|
| 67 |
+
st.session_state["selected_model"]=st.selectbox('Select Model to apply flags',model_dict.keys())
|
| 68 |
+
model =model_dict[st.session_state["selected_model"]]['Model_object']
|
| 69 |
+
date=st.session_state['date']
|
| 70 |
+
date=pd.to_datetime(date)
|
| 71 |
+
X_train =model_dict[st.session_state["selected_model"]]['X_train']
|
| 72 |
+
|
| 73 |
+
features_set= model_dict[st.session_state["selected_model"]]['feature_set']
|
| 74 |
+
|
| 75 |
+
col=st.columns(3)
|
| 76 |
+
min_date=min(date)
|
| 77 |
+
max_date=max(date)
|
| 78 |
+
with col[0]:
|
| 79 |
+
start_date=st.date_input('Select Start Date',min_date,min_value=min_date,max_value=max_date)
|
| 80 |
+
with col[1]:
|
| 81 |
+
end_date=st.date_input('Select End Date',max_date,min_value=min_date,max_value=max_date)
|
| 82 |
+
with col[2]:
|
| 83 |
+
repeat=st.selectbox('Repeat Annually',['Yes','No'],index=1)
|
| 84 |
+
if repeat =='Yes':
|
| 85 |
+
repeat=True
|
| 86 |
+
else:
|
| 87 |
+
repeat=False
|
| 88 |
+
# X_train=sm.add_constant(X_train)
|
| 89 |
+
|
| 90 |
+
if 'Flags' not in st.session_state:
|
| 91 |
+
st.session_state['Flags']={}
|
| 92 |
+
# print("**"*50)
|
| 93 |
+
# print(y_train)
|
| 94 |
+
# print("**"*50)
|
| 95 |
+
# print(model.fittedvalues)
|
| 96 |
+
if is_panel : # Sprint3
|
| 97 |
+
met, line_values, fig_flag = plot_actual_vs_predicted(X_train[date_col], y_train,
|
| 98 |
+
model.fittedvalues, model,
|
| 99 |
+
target_column='Revenue',
|
| 100 |
+
flag=(start_date, end_date),
|
| 101 |
+
repeat_all_years=repeat, is_panel=True)
|
| 102 |
+
st.plotly_chart(fig_flag, use_container_width=True)
|
| 103 |
+
|
| 104 |
+
# create flag on test
|
| 105 |
+
met, test_line_values, fig_flag = plot_actual_vs_predicted(X_test[date_col], y_test,
|
| 106 |
+
st.session_state['pred_test'], model,
|
| 107 |
+
target_column='Revenue',
|
| 108 |
+
flag=(start_date, end_date),
|
| 109 |
+
repeat_all_years=repeat, is_panel=True)
|
| 110 |
+
|
| 111 |
+
else :
|
| 112 |
+
met,line_values,fig_flag=plot_actual_vs_predicted(date[:150], y_train, model.predict(X_train), model,flag=(start_date,end_date),repeat_all_years=repeat)
|
| 113 |
+
st.plotly_chart(fig_flag,use_container_width=True)
|
| 114 |
+
|
| 115 |
+
met,test_line_values,fig_flag=plot_actual_vs_predicted(date[150:], y_test, model.predict(X_test), model,flag=(start_date,end_date),repeat_all_years=repeat)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
flag_name='f1'
|
| 119 |
+
flag_name=st.text_input('Enter Flag Name')
|
| 120 |
+
if st.button('Update flag'):
|
| 121 |
+
st.session_state['Flags'][flag_name]= {}
|
| 122 |
+
st.session_state['Flags'][flag_name]['train']=line_values
|
| 123 |
+
st.session_state['Flags'][flag_name]['test']=test_line_values
|
| 124 |
+
# st.write(st.session_state['Flags'][flag_name])
|
| 125 |
+
st.success(f'{flag_name} stored')
|
| 126 |
+
|
| 127 |
+
options=list(st.session_state['Flags'].keys())
|
| 128 |
+
selected_options = []
|
| 129 |
+
num_columns = 4
|
| 130 |
+
num_rows = -(-len(options) // num_columns)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
tick=False
|
| 134 |
+
if st.checkbox('Select all'):
|
| 135 |
+
tick=True
|
| 136 |
+
selected_options = []
|
| 137 |
+
for row in range(num_rows):
|
| 138 |
+
cols = st.columns(num_columns)
|
| 139 |
+
for col in cols:
|
| 140 |
+
if options:
|
| 141 |
+
option = options.pop(0)
|
| 142 |
+
selected = col.checkbox(option,value=tick)
|
| 143 |
+
if selected:
|
| 144 |
+
selected_options.append(option)
|
| 145 |
+
|
| 146 |
+
st.markdown('### 1.2 Select Parameters to Apply')
|
| 147 |
+
parameters=st.columns(3)
|
| 148 |
+
with parameters[0]:
|
| 149 |
+
Trend=st.checkbox("**Trend**")
|
| 150 |
+
st.markdown('Helps account for long-term trends or seasonality that could influence advertising effectiveness')
|
| 151 |
+
with parameters[1]:
|
| 152 |
+
week_number=st.checkbox('**Week_number**')
|
| 153 |
+
st.markdown('Assists in detecting and incorporating weekly patterns or seasonality')
|
| 154 |
+
with parameters[2]:
|
| 155 |
+
sine_cosine=st.checkbox('**Sine and Cosine Waves**')
|
| 156 |
+
st.markdown('Helps in capturing cyclical patterns or seasonality in the data')
|
| 157 |
+
|
| 158 |
+
if st.button('Build model with Selected Parameters and Flags'):
|
| 159 |
+
st.header('2.1 Results Summary')
|
| 160 |
+
# date=list(df.index)
|
| 161 |
+
# df = df.reset_index(drop=True)
|
| 162 |
+
# st.write(df.head(2))
|
| 163 |
+
# X_train=df[features_set]
|
| 164 |
+
ss = MinMaxScaler()
|
| 165 |
+
if is_panel == True :
|
| 166 |
+
X = X_train[features_set]
|
| 167 |
+
X_train_tuned = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
|
| 168 |
+
X_train_tuned[target_col] = X_train[target_col]
|
| 169 |
+
X_train_tuned[date_col] = X_train[date_col]
|
| 170 |
+
X_train_tuned[panel_col] = X_train[panel_col]
|
| 171 |
+
|
| 172 |
+
X = X_test[features_set]
|
| 173 |
+
X_test_tuned = pd.DataFrame(ss.transform(X), columns=X.columns)
|
| 174 |
+
X_test_tuned[target_col] = X_test[target_col]
|
| 175 |
+
X_test_tuned[date_col] = X_test[date_col]
|
| 176 |
+
X_test_tuned[panel_col] = X_test[panel_col]
|
| 177 |
+
|
| 178 |
+
else :
|
| 179 |
+
X_train_tuned = pd.DataFrame(ss.fit_transform(X_train), columns=X_train.columns)
|
| 180 |
+
X_train_tuned = sm.add_constant(X_train_tuned)
|
| 181 |
+
|
| 182 |
+
X_test_tuned = pd.DataFrame(ss.transform(X_test), columns=X_test.columns)
|
| 183 |
+
X_test_tuned = sm.add_constant(X_test_tuned)
|
| 184 |
+
|
| 185 |
+
for flag in selected_options:
|
| 186 |
+
X_train_tuned[flag]=st.session_state['Flags'][flag]['train']
|
| 187 |
+
X_test_tuned[flag]=st.session_state['Flags'][flag]['test']
|
| 188 |
+
|
| 189 |
+
#test
|
| 190 |
+
# X_train_tuned.to_csv("Test/X_train_tuned_flag.csv",index=False)
|
| 191 |
+
# X_test_tuned.to_csv("Test/X_test_tuned_flag.csv",index=False)
|
| 192 |
+
|
| 193 |
+
new_features = features_set
|
| 194 |
+
# print("()()"*20,flag, len(st.session_state['Flags'][flag]))
|
| 195 |
+
if Trend:
|
| 196 |
+
# Sprint3 - group by panel, calculate trend of each panel spearately. Add trend to new feature set
|
| 197 |
+
if is_panel :
|
| 198 |
+
newdata = pd.DataFrame()
|
| 199 |
+
panel_wise_end_point_train = {}
|
| 200 |
+
for panel, groupdf in X_train_tuned.groupby(panel_col):
|
| 201 |
+
groupdf.sort_values(date_col, inplace=True)
|
| 202 |
+
groupdf['Trend'] = np.arange(1, len(groupdf) + 1, 1)
|
| 203 |
+
newdata = pd.concat([newdata, groupdf])
|
| 204 |
+
panel_wise_end_point_train[panel] = len(groupdf)
|
| 205 |
+
X_train_tuned = newdata.copy()
|
| 206 |
+
|
| 207 |
+
test_newdata=pd.DataFrame()
|
| 208 |
+
for panel, test_groupdf in X_test_tuned.groupby(panel_col):
|
| 209 |
+
test_groupdf.sort_values(date_col, inplace=True)
|
| 210 |
+
start = panel_wise_end_point_train[panel]+1
|
| 211 |
+
end = start + len(test_groupdf)
|
| 212 |
+
# print("??"*20, panel, len(test_groupdf), len(np.arange(start, end, 1)), start)
|
| 213 |
+
test_groupdf['Trend'] = np.arange(start, end, 1)
|
| 214 |
+
test_newdata = pd.concat([test_newdata, test_groupdf])
|
| 215 |
+
X_test_tuned = test_newdata.copy()
|
| 216 |
+
|
| 217 |
+
new_features = new_features + ['Trend']
|
| 218 |
+
|
| 219 |
+
# test
|
| 220 |
+
X_test_tuned.to_csv("Test/X_test_tuned_trend.csv", index=False)
|
| 221 |
+
X_train_tuned.to_csv("Test/X_train_tuned_trend.csv", index=False)
|
| 222 |
+
pd.concat([X_train_tuned,X_test_tuned]).sort_values([panel_col, date_col]).to_csv("Test/X_train_test_tuned_trend.csv", index=False)
|
| 223 |
+
|
| 224 |
+
else :
|
| 225 |
+
X_train_tuned['Trend']=np.arange(1,len(X_train_tuned)+1,1)
|
| 226 |
+
X_test_tuned['Trend'] = np.arange(len(X_train_tuned)+1, len(X_train_tuned)+len(X_test_tuned), 1)
|
| 227 |
+
|
| 228 |
+
if week_number :
|
| 229 |
+
# Sprint3 - create weeknumber from date column in xtrain tuned. add week num to new feature set
|
| 230 |
+
if is_panel :
|
| 231 |
+
X_train_tuned[date_col] = pd.to_datetime(X_train_tuned[date_col])
|
| 232 |
+
X_train_tuned['Week_number'] = X_train_tuned[date_col].dt.day_of_week
|
| 233 |
+
if X_train_tuned['Week_number'].nunique() == 1 :
|
| 234 |
+
st.write("All dates in the data are of the same week day. Hence Week number can't be used.")
|
| 235 |
+
else :
|
| 236 |
+
X_test_tuned[date_col] = pd.to_datetime(X_test_tuned[date_col])
|
| 237 |
+
X_test_tuned['Week_number'] = X_test_tuned[date_col].dt.day_of_week
|
| 238 |
+
new_features = new_features + ['Week_number']
|
| 239 |
+
|
| 240 |
+
else :
|
| 241 |
+
date = pd.to_datetime(date.values)
|
| 242 |
+
X_train_tuned['Week_number'] = date.dt.day_of_week[:150]
|
| 243 |
+
X_test_tuned['Week_number'] = date.dt.day_of_week[150:]
|
| 244 |
+
|
| 245 |
+
if sine_cosine :
|
| 246 |
+
# Sprint3 - create panel wise sine cosine waves in xtrain tuned. add to new feature set
|
| 247 |
+
if is_panel :
|
| 248 |
+
new_features = new_features + ['sine_wave', 'cosine_wave']
|
| 249 |
+
newdata = pd.DataFrame()
|
| 250 |
+
groups = X_train_tuned.groupby(panel_col)
|
| 251 |
+
frequency = 2 * np.pi / 365 # Adjust the frequency as needed
|
| 252 |
+
|
| 253 |
+
train_panel_wise_end_point = {}
|
| 254 |
+
for panel, groupdf in groups:
|
| 255 |
+
num_samples = len(groupdf)
|
| 256 |
+
train_panel_wise_end_point[panel] = num_samples
|
| 257 |
+
days_since_start = np.arange(num_samples)
|
| 258 |
+
sine_wave = np.sin(frequency * days_since_start)
|
| 259 |
+
cosine_wave = np.cos(frequency * days_since_start)
|
| 260 |
+
sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
|
| 261 |
+
assert len(sine_cosine_df) == len(groupdf)
|
| 262 |
+
# groupdf = pd.concat([groupdf, sine_cosine_df], axis=1)
|
| 263 |
+
groupdf['sine_wave'] = sine_wave
|
| 264 |
+
groupdf['cosine_wave'] = cosine_wave
|
| 265 |
+
newdata = pd.concat([newdata, groupdf])
|
| 266 |
+
|
| 267 |
+
test_groups = X_test_tuned.groupby(panel_col)
|
| 268 |
+
for panel, test_groupdf in test_groups:
|
| 269 |
+
num_samples = len(test_groupdf)
|
| 270 |
+
start = train_panel_wise_end_point[panel]
|
| 271 |
+
days_since_start = np.arange(start, start+num_samples, 1)
|
| 272 |
+
# print("##", panel, num_samples, start, len(np.arange(start, start+num_samples, 1)))
|
| 273 |
+
sine_wave = np.sin(frequency * days_since_start)
|
| 274 |
+
cosine_wave = np.cos(frequency * days_since_start)
|
| 275 |
+
sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
|
| 276 |
+
assert len(sine_cosine_df) == len(test_groupdf)
|
| 277 |
+
# groupdf = pd.concat([groupdf, sine_cosine_df], axis=1)
|
| 278 |
+
test_groupdf['sine_wave'] = sine_wave
|
| 279 |
+
test_groupdf['cosine_wave'] = cosine_wave
|
| 280 |
+
newdata = pd.concat([newdata, test_groupdf])
|
| 281 |
+
|
| 282 |
+
X_train_tuned = newdata.copy()
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
else :
|
| 286 |
+
num_samples = len(X_train_tuned)
|
| 287 |
+
frequency = 2 * np.pi / 365 # Adjust the frequency as needed
|
| 288 |
+
days_since_start = np.arange(num_samples)
|
| 289 |
+
sine_wave = np.sin(frequency * days_since_start)
|
| 290 |
+
cosine_wave = np.cos(frequency * days_since_start)
|
| 291 |
+
sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
|
| 292 |
+
# Concatenate the sine and cosine waves with the scaled X DataFrame
|
| 293 |
+
X_train_tuned = pd.concat([X_train_tuned, sine_cosine_df], axis=1)
|
| 294 |
+
|
| 295 |
+
test_num_samples = len(X_test_tuned)
|
| 296 |
+
start = num_samples
|
| 297 |
+
days_since_start = np.arange(start, start+test_num_samples, 1)
|
| 298 |
+
sine_wave = np.sin(frequency * days_since_start)
|
| 299 |
+
cosine_wave = np.cos(frequency * days_since_start)
|
| 300 |
+
sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
|
| 301 |
+
# Concatenate the sine and cosine waves with the scaled X DataFrame
|
| 302 |
+
X_test_tuned = pd.concat([X_test_tuned, sine_cosine_df], axis=1)
|
| 303 |
+
|
| 304 |
+
# model
|
| 305 |
+
|
| 306 |
+
if is_panel :
|
| 307 |
+
if selected_options :
|
| 308 |
+
new_features = new_features + selected_options
|
| 309 |
+
|
| 310 |
+
inp_vars_str = " + ".join(new_features)
|
| 311 |
+
|
| 312 |
+
# X_train_tuned.to_csv("Test/X_train_tuned.csv",index=False)
|
| 313 |
+
# st.write(X_train_tuned[['total_approved_accounts_revenue'] + new_features].dtypes)
|
| 314 |
+
# st.write(X_train_tuned[['total_approved_accounts_revenue', panel_col] + new_features].isna().sum())
|
| 315 |
+
|
| 316 |
+
md_tuned = smf.mixedlm("total_approved_accounts_revenue ~ {}".format(inp_vars_str),
|
| 317 |
+
data=X_train_tuned[['total_approved_accounts_revenue'] + new_features],
|
| 318 |
+
groups=X_train_tuned[panel_col])
|
| 319 |
+
model_tuned = md_tuned.fit()
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
# plot act v pred for original model and tuned model
|
| 324 |
+
metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_train[date_col], y_train,
|
| 325 |
+
model.fittedvalues, model,
|
| 326 |
+
target_column='Revenue',
|
| 327 |
+
is_panel=True)
|
| 328 |
+
metrics_table_tuned, line, actual_vs_predicted_plot_tuned = plot_actual_vs_predicted(X_train_tuned[date_col],
|
| 329 |
+
X_train_tuned[target_col],
|
| 330 |
+
model_tuned.fittedvalues,
|
| 331 |
+
model_tuned,
|
| 332 |
+
target_column='Revenue',
|
| 333 |
+
is_panel=True)
|
| 334 |
+
|
| 335 |
+
else :
|
| 336 |
+
model_tuned = sm.OLS(y_train, X_train_tuned).fit()
|
| 337 |
+
|
| 338 |
+
metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(date[:150], y_train,
|
| 339 |
+
model.predict(X_train), model,
|
| 340 |
+
target_column='Revenue')
|
| 341 |
+
metrics_table_tuned, line, actual_vs_predicted_plot_tuned = plot_actual_vs_predicted(date[:150], y_train,
|
| 342 |
+
model_tuned.predict(
|
| 343 |
+
X_train_tuned),
|
| 344 |
+
model_tuned,
|
| 345 |
+
target_column='Revenue')
|
| 346 |
+
|
| 347 |
+
# st.write(metrics_table_tuned)
|
| 348 |
+
mape=np.round(metrics_table.iloc[0,1],2)
|
| 349 |
+
r2=np.round(metrics_table.iloc[1,1],2)
|
| 350 |
+
adjr2=np.round(metrics_table.iloc[2,1],2)
|
| 351 |
+
|
| 352 |
+
mape_tuned=np.round(metrics_table_tuned.iloc[0,1],2)
|
| 353 |
+
r2_tuned=np.round(metrics_table_tuned.iloc[1,1],2)
|
| 354 |
+
adjr2_tuned=np.round(metrics_table_tuned.iloc[2,1],2)
|
| 355 |
+
|
| 356 |
+
parameters_=st.columns(3)
|
| 357 |
+
with parameters_[0]:
|
| 358 |
+
st.metric('R2',r2_tuned,np.round(r2_tuned-r2,2))
|
| 359 |
+
with parameters_[1]:
|
| 360 |
+
st.metric('Adjusted R2',adjr2_tuned,np.round(adjr2_tuned-adjr2,2))
|
| 361 |
+
with parameters_[2]:
|
| 362 |
+
st.metric('MAPE',mape_tuned,np.round(mape_tuned-mape,2),'inverse')
|
| 363 |
+
|
| 364 |
+
st.header('2.2 Actual vs. Predicted Plot')
|
| 365 |
+
# if is_panel:
|
| 366 |
+
# metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(date, y_train, model.predict(X_train),
|
| 367 |
+
# model, target_column='Revenue',is_panel=True)
|
| 368 |
+
# else:
|
| 369 |
+
# metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(date, y_train, model.predict(X_train), model,target_column='Revenue')
|
| 370 |
+
|
| 371 |
+
metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(X_train_tuned[date_col], X_train_tuned[target_col],
|
| 372 |
+
model_tuned.fittedvalues, model_tuned,
|
| 373 |
+
target_column='Revenue',
|
| 374 |
+
is_panel=True)
|
| 375 |
+
# plot_actual_vs_predicted(X_train[date_col], y_train,
|
| 376 |
+
# model.fittedvalues, model,
|
| 377 |
+
# target_column='Revenue',
|
| 378 |
+
# is_panel=is_panel)
|
| 379 |
+
|
| 380 |
+
st.plotly_chart(actual_vs_predicted_plot,use_container_width=True)
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
st.markdown('## 2.3 Residual Analysis')
|
| 385 |
+
columns=st.columns(2)
|
| 386 |
+
with columns[0]:
|
| 387 |
+
fig=plot_residual_predicted(y_train,model.predict(X_train),X_train)
|
| 388 |
+
st.plotly_chart(fig)
|
| 389 |
+
|
| 390 |
+
with columns[1]:
|
| 391 |
+
st.empty()
|
| 392 |
+
fig = qqplot(y_train,model.predict(X_train))
|
| 393 |
+
st.plotly_chart(fig)
|
| 394 |
+
|
| 395 |
+
with columns[0]:
|
| 396 |
+
fig=residual_distribution(y_train,model.predict(X_train))
|
| 397 |
+
st.pyplot(fig)
|
| 398 |
+
|
| 399 |
+
if st.checkbox('Use this model to build response curves',key='123'):
|
| 400 |
+
st.session_state["tuned_model"] = model_tuned
|
| 401 |
+
st.session_state["X_train_tuned"] = X_train_tuned
|
| 402 |
+
st.session_state["X_test_tuned"] = X_test_tuned
|
| 403 |
+
st.session_state["X_train_tuned"] = X_train_tuned
|
| 404 |
+
st.session_state["X_test_tuned"] = X_test_tuned
|
| 405 |
+
if is_panel :
|
| 406 |
+
st.session_state["tuned_model_features"] = new_features
|
| 407 |
+
with open("tuned_model.pkl", "wb") as f:
|
| 408 |
+
pickle.dump(st.session_state['tuned_model'], f)
|
| 409 |
+
st.success('Model saved!')
|
| 410 |
+
|
| 411 |
+
# raw_data=df[features_set]
|
| 412 |
+
# columns_raw=[re.split(r"(_lag|_adst)",col)[0] for col in raw_data.columns]
|
| 413 |
+
# raw_data.columns=columns_raw
|
| 414 |
+
# columns_media=[col for col in columns_raw if Categorised_data[col]['BB']=='Media']
|
| 415 |
+
# raw_data=raw_data[columns_media]
|
| 416 |
+
|
| 417 |
+
# raw_data['Date']=list(df.index)
|
| 418 |
+
|
| 419 |
+
# spends_var=[col for col in df.columns if "spends" in col.lower() and 'adst' not in col.lower() and 'lag' not in col.lower()]
|
| 420 |
+
# spends_df=df[spends_var]
|
| 421 |
+
# spends_df['Week']=list(df.index)
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
# j=0
|
| 425 |
+
# X1=X.copy()
|
| 426 |
+
# col=X1.columns
|
| 427 |
+
# for i in model.params.values:
|
| 428 |
+
# X1[col[j]]=X1.iloc[:,j]*i
|
| 429 |
+
# j+=1
|
| 430 |
+
# contribution_df=X1
|
| 431 |
+
# contribution_df['Date']=list(df.index)
|
| 432 |
+
# excel_file='Overview_data.xlsx'
|
| 433 |
+
|
| 434 |
+
# with pd.ExcelWriter(excel_file,engine='xlsxwriter') as writer:
|
| 435 |
+
# raw_data.to_excel(writer,sheet_name='RAW DATA MMM',index=False)
|
| 436 |
+
# spends_df.to_excel(writer,sheet_name='SPEND INPUT',index=False)
|
| 437 |
+
# contribution_df.to_excel(writer,sheet_name='CONTRIBUTION MMM')
|
pages/4_Saved_Model_Results.py
ADDED
|
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import plotly.express as px
|
| 2 |
+
import numpy as np
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import statsmodels.api as sm
|
| 7 |
+
from sklearn.metrics import mean_absolute_percentage_error
|
| 8 |
+
import sys
|
| 9 |
+
import os
|
| 10 |
+
from utilities import (set_header,
|
| 11 |
+
load_local_css,
|
| 12 |
+
load_authenticator)
|
| 13 |
+
import seaborn as sns
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
import sweetviz as sv
|
| 16 |
+
import tempfile
|
| 17 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 18 |
+
from st_aggrid import AgGrid
|
| 19 |
+
from st_aggrid import GridOptionsBuilder,GridUpdateMode
|
| 20 |
+
from st_aggrid import GridOptionsBuilder
|
| 21 |
+
import sys
|
| 22 |
+
import re
|
| 23 |
+
|
| 24 |
+
sys.setrecursionlimit(10**6)
|
| 25 |
+
|
| 26 |
+
original_stdout = sys.stdout
|
| 27 |
+
sys.stdout = open('temp_stdout.txt', 'w')
|
| 28 |
+
sys.stdout.close()
|
| 29 |
+
sys.stdout = original_stdout
|
| 30 |
+
|
| 31 |
+
st.set_page_config(layout='wide')
|
| 32 |
+
load_local_css('styles.css')
|
| 33 |
+
set_header()
|
| 34 |
+
|
| 35 |
+
for k, v in st.session_state.items():
|
| 36 |
+
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
| 37 |
+
st.session_state[k] = v
|
| 38 |
+
|
| 39 |
+
authenticator = st.session_state.get('authenticator')
|
| 40 |
+
if authenticator is None:
|
| 41 |
+
authenticator = load_authenticator()
|
| 42 |
+
|
| 43 |
+
name, authentication_status, username = authenticator.login('Login', 'main')
|
| 44 |
+
auth_status = st.session_state.get('authentication_status')
|
| 45 |
+
|
| 46 |
+
if auth_status == True:
|
| 47 |
+
is_state_initiaized = st.session_state.get('initialized',False)
|
| 48 |
+
if not is_state_initiaized:
|
| 49 |
+
a=1
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def plot_residual_predicted(actual, predicted, df_):
|
| 53 |
+
df_['Residuals'] = actual - pd.Series(predicted)
|
| 54 |
+
df_['StdResidual'] = (df_['Residuals'] - df_['Residuals'].mean()) / df_['Residuals'].std()
|
| 55 |
+
|
| 56 |
+
# Create a Plotly scatter plot
|
| 57 |
+
fig = px.scatter(df_, x=predicted, y='StdResidual', opacity=0.5,color_discrete_sequence=["#11B6BD"])
|
| 58 |
+
|
| 59 |
+
# Add horizontal lines
|
| 60 |
+
fig.add_hline(y=0, line_dash="dash", line_color="darkorange")
|
| 61 |
+
fig.add_hline(y=2, line_color="red")
|
| 62 |
+
fig.add_hline(y=-2, line_color="red")
|
| 63 |
+
|
| 64 |
+
fig.update_xaxes(title='Predicted')
|
| 65 |
+
fig.update_yaxes(title='Standardized Residuals (Actual - Predicted)')
|
| 66 |
+
|
| 67 |
+
# Set the same width and height for both figures
|
| 68 |
+
fig.update_layout(title='Residuals over Predicted Values', autosize=False, width=600, height=400)
|
| 69 |
+
|
| 70 |
+
return fig
|
| 71 |
+
|
| 72 |
+
def residual_distribution(actual, predicted):
|
| 73 |
+
Residuals = actual - pd.Series(predicted)
|
| 74 |
+
|
| 75 |
+
# Create a Seaborn distribution plot
|
| 76 |
+
sns.set(style="whitegrid")
|
| 77 |
+
plt.figure(figsize=(6, 4))
|
| 78 |
+
sns.histplot(Residuals, kde=True, color="#11B6BD")
|
| 79 |
+
|
| 80 |
+
plt.title(' Distribution of Residuals')
|
| 81 |
+
plt.xlabel('Residuals')
|
| 82 |
+
plt.ylabel('Probability Density')
|
| 83 |
+
|
| 84 |
+
return plt
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def qqplot(actual, predicted):
|
| 88 |
+
Residuals = actual - pd.Series(predicted)
|
| 89 |
+
Residuals = pd.Series(Residuals)
|
| 90 |
+
Resud_std = (Residuals - Residuals.mean()) / Residuals.std()
|
| 91 |
+
|
| 92 |
+
# Create a QQ plot using Plotly with custom colors
|
| 93 |
+
fig = go.Figure()
|
| 94 |
+
fig.add_trace(go.Scatter(x=sm.ProbPlot(Resud_std).theoretical_quantiles,
|
| 95 |
+
y=sm.ProbPlot(Resud_std).sample_quantiles,
|
| 96 |
+
mode='markers',
|
| 97 |
+
marker=dict(size=5, color="#11B6BD"),
|
| 98 |
+
name='QQ Plot'))
|
| 99 |
+
|
| 100 |
+
# Add the 45-degree reference line
|
| 101 |
+
diagonal_line = go.Scatter(
|
| 102 |
+
x=[-2, 2], # Adjust the x values as needed to fit the range of your data
|
| 103 |
+
y=[-2, 2], # Adjust the y values accordingly
|
| 104 |
+
mode='lines',
|
| 105 |
+
line=dict(color='red'), # Customize the line color and style
|
| 106 |
+
name=' '
|
| 107 |
+
)
|
| 108 |
+
fig.add_trace(diagonal_line)
|
| 109 |
+
|
| 110 |
+
# Customize the layout
|
| 111 |
+
fig.update_layout(title='QQ Plot of Residuals',title_x=0.5, autosize=False, width=600, height=400,
|
| 112 |
+
xaxis_title='Theoretical Quantiles', yaxis_title='Sample Quantiles')
|
| 113 |
+
|
| 114 |
+
return fig
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def plot_actual_vs_predicted(date, y, predicted_values, model):
|
| 118 |
+
|
| 119 |
+
fig = go.Figure()
|
| 120 |
+
|
| 121 |
+
fig.add_trace(go.Scatter(x=date, y=y, mode='lines', name='Actual', line=dict(color='blue')))
|
| 122 |
+
fig.add_trace(go.Scatter(x=date, y=predicted_values, mode='lines', name='Predicted', line=dict(color='orange')))
|
| 123 |
+
|
| 124 |
+
# Calculate MAPE
|
| 125 |
+
mape = mean_absolute_percentage_error(y, predicted_values)*100
|
| 126 |
+
|
| 127 |
+
# Calculate R-squared
|
| 128 |
+
rss = np.sum((y - predicted_values) ** 2)
|
| 129 |
+
tss = np.sum((y - np.mean(y)) ** 2)
|
| 130 |
+
r_squared = 1 - (rss / tss)
|
| 131 |
+
|
| 132 |
+
# Get the number of predictors
|
| 133 |
+
num_predictors = model.df_model
|
| 134 |
+
|
| 135 |
+
# Get the number of samples
|
| 136 |
+
num_samples = len(y)
|
| 137 |
+
|
| 138 |
+
# Calculate Adjusted R-squared
|
| 139 |
+
adj_r_squared = 1 - ((1 - r_squared) * ((num_samples - 1) / (num_samples - num_predictors - 1)))
|
| 140 |
+
metrics_table = pd.DataFrame({
|
| 141 |
+
'Metric': ['MAPE', 'R-squared', 'AdjR-squared'],
|
| 142 |
+
'Value': [mape, r_squared, adj_r_squared]})
|
| 143 |
+
fig.update_layout(
|
| 144 |
+
xaxis=dict(title='Date'),
|
| 145 |
+
yaxis=dict(title='Value'),
|
| 146 |
+
title=f'MAPE : {mape:.2f}%, AdjR2: {adj_r_squared:.2f}',
|
| 147 |
+
xaxis_tickangle=-30
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
return metrics_table,fig
|
| 151 |
+
def contributions(X, model):
|
| 152 |
+
X1 = X.copy()
|
| 153 |
+
for j, col in enumerate(X1.columns):
|
| 154 |
+
X1[col] = X1[col] * model.params.values[j]
|
| 155 |
+
|
| 156 |
+
return np.round((X1.sum() / sum(X1.sum()) * 100).sort_values(ascending=False), 2)
|
| 157 |
+
|
| 158 |
+
transformed_data=pd.read_csv('transformed_data.csv')
|
| 159 |
+
|
| 160 |
+
# hard coded for now, need to get features set from model
|
| 161 |
+
|
| 162 |
+
feature_set_dct={'app_installs_-_appsflyer':['paid_search_clicks',
|
| 163 |
+
'fb:_level_achieved_-_tier_1_impressions_lag2',
|
| 164 |
+
'fb:_level_achieved_-_tier_2_clicks_lag2',
|
| 165 |
+
'paid_social_others_impressions_adst.1',
|
| 166 |
+
'ga_app:_will_and_cid_pequena_baixo_risco_clicks_lag2',
|
| 167 |
+
'digital_tactic_others_clicks',
|
| 168 |
+
'kwai_clicks_adst.3',
|
| 169 |
+
'programmaticclicks',
|
| 170 |
+
'indicacao_clicks_adst.1',
|
| 171 |
+
'infleux_clicks_adst.4',
|
| 172 |
+
'influencer_clicks'],
|
| 173 |
+
|
| 174 |
+
'account_requests_-_appsflyer':['paid_search_impressions',
|
| 175 |
+
'fb:_level_achieved_-_tier_1_clicks_adst.1',
|
| 176 |
+
'fb:_level_achieved_-_tier_2_clicks_adst.1',
|
| 177 |
+
'paid_social_others_clicks_lag2',
|
| 178 |
+
'ga_app:_will_and_cid_pequena_baixo_risco_clicks_lag5_adst.1',
|
| 179 |
+
'digital_tactic_others_clicks_adst.1',
|
| 180 |
+
'kwai_clicks_adst.2',
|
| 181 |
+
'programmaticimpressions_lag4_adst.1',
|
| 182 |
+
'indicacao_clicks',
|
| 183 |
+
'infleux_clicks_adst.2',
|
| 184 |
+
'influencer_clicks'],
|
| 185 |
+
|
| 186 |
+
'total_approved_accounts_-_appsflyer':['paid_search_clicks',
|
| 187 |
+
'fb:_level_achieved_-_tier_1_impressions_lag2_adst.1',
|
| 188 |
+
'fb:_level_achieved_-_tier_2_impressions_lag2',
|
| 189 |
+
'paid_social_others_clicks_lag2_adst.2',
|
| 190 |
+
'ga_app:_will_and_cid_pequena_baixo_risco_impressions_lag4',
|
| 191 |
+
'digital_tactic_others_clicks',
|
| 192 |
+
'kwai_impressions_adst.2',
|
| 193 |
+
'programmaticclicks_adst.5',
|
| 194 |
+
'indicacao_clicks_adst.1',
|
| 195 |
+
'infleux_clicks_adst.3',
|
| 196 |
+
'influencer_clicks'],
|
| 197 |
+
|
| 198 |
+
'total_approved_accounts_-_revenue':['paid_search_impressions_adst.5',
|
| 199 |
+
'kwai_impressions_lag2_adst.3',
|
| 200 |
+
'indicacao_clicks_adst.3',
|
| 201 |
+
'infleux_clicks_adst.3',
|
| 202 |
+
'programmaticclicks_adst.4',
|
| 203 |
+
'influencer_clicks_adst.3',
|
| 204 |
+
'fb:_level_achieved_-_tier_1_impressions_adst.2',
|
| 205 |
+
'fb:_level_achieved_-_tier_2_impressions_lag3_adst.5',
|
| 206 |
+
'paid_social_others_impressions_adst.3',
|
| 207 |
+
'ga_app:_will_and_cid_pequena_baixo_risco_clicks_lag3_adst.5',
|
| 208 |
+
'digital_tactic_others_clicks_adst.2']
|
| 209 |
+
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
#""" the above part should be modified so that we are fetching features set from the saved model"""
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def contributions(X, model,target):
|
| 217 |
+
X1 = X.copy()
|
| 218 |
+
for j, col in enumerate(X1.columns):
|
| 219 |
+
X1[col] = X1[col] * model.params.values[j]
|
| 220 |
+
|
| 221 |
+
contributions= np.round((X1.sum() / sum(X1.sum()) * 100).sort_values(ascending=False), 2)
|
| 222 |
+
contributions=pd.DataFrame(contributions,columns=target).reset_index().rename(columns={'index':'Channel'})
|
| 223 |
+
contributions['Channel']=[ re.split(r'_imp|_cli', col)[0] for col in contributions['Channel']]
|
| 224 |
+
|
| 225 |
+
return contributions
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def model_fit(features_set,target):
|
| 229 |
+
X = transformed_data[features_set]
|
| 230 |
+
y= transformed_data[target]
|
| 231 |
+
ss = MinMaxScaler()
|
| 232 |
+
X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
|
| 233 |
+
X = sm.add_constant(X)
|
| 234 |
+
X_train=X.iloc[:150]
|
| 235 |
+
X_test=X.iloc[150:]
|
| 236 |
+
y_train=y.iloc[:150]
|
| 237 |
+
y_test=y.iloc[150:]
|
| 238 |
+
model = sm.OLS(y_train, X_train).fit()
|
| 239 |
+
predicted_values_train = model.predict(X_train)
|
| 240 |
+
r2 = model.rsquared
|
| 241 |
+
adjr2 = model.rsquared_adj
|
| 242 |
+
train_mape = mean_absolute_percentage_error(y_train, predicted_values_train)
|
| 243 |
+
test_mape=mean_absolute_percentage_error(y_test, model.predict(X_test))
|
| 244 |
+
summary=model.summary()
|
| 245 |
+
train_contributions=contributions(X_train,model,[target])
|
| 246 |
+
return pd.DataFrame({'Model':target,'R2':np.round(r2,2),'ADJr2':np.round(adjr2,2),'Train Mape':np.round(train_mape,2),
|
| 247 |
+
'Test Mape':np.round(test_mape,2),'Summary':summary,'Model_object':model
|
| 248 |
+
},index=[0]), train_contributions
|
| 249 |
+
|
| 250 |
+
metrics_table=pd.DataFrame()
|
| 251 |
+
|
| 252 |
+
if 'contribution_df' not in st.session_state:
|
| 253 |
+
st.session_state["contribution_df"]=pd.DataFrame()
|
| 254 |
+
|
| 255 |
+
for target,feature_set in feature_set_dct.items():
|
| 256 |
+
metrics_table= pd.concat([metrics_table,model_fit(features_set=feature_set,target=target)[0]])
|
| 257 |
+
if st.session_state["contribution_df"].empty:
|
| 258 |
+
st.session_state["contribution_df"]= model_fit(features_set=feature_set,target=target)[1]
|
| 259 |
+
else:
|
| 260 |
+
st.session_state["contribution_df"]=pd.merge(st.session_state["contribution_df"],model_fit(features_set=feature_set,target=target)[1])
|
| 261 |
+
|
| 262 |
+
# st.write(st.session_state["contribution_df"])
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
metrics_table.reset_index(drop=True,inplace=True)
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
eda_columns=st.columns(2)
|
| 275 |
+
with eda_columns[1]:
|
| 276 |
+
eda=st.button('Generate EDA Report',help="Click to generate a bivariate report for the selected response metric from the table below.")
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
# st.markdown('Model Metrics')
|
| 281 |
+
|
| 282 |
+
st.title('Contribution Overview')
|
| 283 |
+
|
| 284 |
+
contribution_selections=st.multiselect('Select the models to compare contributions',[col for col in st.session_state['contribution_df'].columns if col.lower() != 'channel' ],default=[col for col in st.session_state['contribution_df'].columns if col.lower() != 'channel' ][-1])
|
| 285 |
+
trace_data=[]
|
| 286 |
+
|
| 287 |
+
for selection in contribution_selections:
|
| 288 |
+
|
| 289 |
+
trace=go.Bar(x=st.session_state['contribution_df']['Channel'], y=st.session_state['contribution_df'][selection],name=selection,text=np.round(st.session_state['contribution_df'][selection],0).astype(int).astype(str)+'%',textposition='outside')
|
| 290 |
+
trace_data.append(trace)
|
| 291 |
+
|
| 292 |
+
layout = go.Layout(
|
| 293 |
+
title='Metrics Contribution by Channel',
|
| 294 |
+
xaxis=dict(title='Channel Name'),
|
| 295 |
+
yaxis=dict(title='Metrics Contribution'),
|
| 296 |
+
barmode='group'
|
| 297 |
+
)
|
| 298 |
+
fig = go.Figure(data=trace_data, layout=layout)
|
| 299 |
+
st.plotly_chart(fig,use_container_width=True)
|
| 300 |
+
|
| 301 |
+
st.title('Analysis of Models Result')
|
| 302 |
+
#st.markdown()
|
| 303 |
+
gd_table=metrics_table.iloc[:,:-2]
|
| 304 |
+
gd=GridOptionsBuilder.from_dataframe(gd_table)
|
| 305 |
+
#gd.configure_pagination(enabled=True)
|
| 306 |
+
gd.configure_selection(use_checkbox=True)
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
gridoptions=gd.build()
|
| 310 |
+
table = AgGrid(gd_table,gridOptions=gridoptions,fit_columns_on_grid_load=True,height=200)
|
| 311 |
+
# table=metrics_table.iloc[:,:-2]
|
| 312 |
+
# table.insert(0, "Select", False)
|
| 313 |
+
# selection_table=st.data_editor(table,column_config={"Select": st.column_config.CheckboxColumn(required=True)})
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
if len(table.selected_rows)==0:
|
| 318 |
+
st.warning("Click on the checkbox to view comprehensive results of the selected model.")
|
| 319 |
+
st.stop()
|
| 320 |
+
else:
|
| 321 |
+
target_column=table.selected_rows[0]['Model']
|
| 322 |
+
feature_set=feature_set_dct[target_column]
|
| 323 |
+
|
| 324 |
+
with eda_columns[1]:
|
| 325 |
+
if eda:
|
| 326 |
+
def generate_report_with_target(channel_data, target_feature):
|
| 327 |
+
report = sv.analyze([channel_data, "Dataset"], target_feat=target_feature,verbose=False)
|
| 328 |
+
temp_dir = tempfile.mkdtemp()
|
| 329 |
+
report_path = os.path.join(temp_dir, "report.html")
|
| 330 |
+
report.show_html(filepath=report_path, open_browser=False) # Generate the report as an HTML file
|
| 331 |
+
return report_path
|
| 332 |
+
|
| 333 |
+
report_data=transformed_data[feature_set]
|
| 334 |
+
report_data[target_column]=transformed_data[target_column]
|
| 335 |
+
report_file = generate_report_with_target(report_data, target_column)
|
| 336 |
+
|
| 337 |
+
if os.path.exists(report_file):
|
| 338 |
+
with open(report_file, 'rb') as f:
|
| 339 |
+
st.download_button(
|
| 340 |
+
label="Download EDA Report",
|
| 341 |
+
data=f.read(),
|
| 342 |
+
file_name="report.html",
|
| 343 |
+
mime="text/html"
|
| 344 |
+
)
|
| 345 |
+
else:
|
| 346 |
+
st.warning("Report generation failed. Unable to find the report file.")
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
model=metrics_table[metrics_table['Model']==target_column]['Model_object'].iloc[0]
|
| 351 |
+
st.header('Model Summary')
|
| 352 |
+
st.write(model.summary())
|
| 353 |
+
X=transformed_data[feature_set]
|
| 354 |
+
ss=MinMaxScaler()
|
| 355 |
+
X=pd.DataFrame(ss.fit_transform(X),columns=X.columns)
|
| 356 |
+
X=sm.add_constant(X)
|
| 357 |
+
y=transformed_data[target_column]
|
| 358 |
+
X_train=X.iloc[:150]
|
| 359 |
+
X_test=X.iloc[150:]
|
| 360 |
+
y_train=y.iloc[:150]
|
| 361 |
+
y_test=y.iloc[150:]
|
| 362 |
+
X.index=transformed_data['date']
|
| 363 |
+
y.index=transformed_data['date']
|
| 364 |
+
|
| 365 |
+
metrics_table_train,fig_train= plot_actual_vs_predicted(X_train.index, y_train, model.predict(X_train), model)
|
| 366 |
+
metrics_table_test,fig_test= plot_actual_vs_predicted(X_test.index, y_test, model.predict(X_test), model)
|
| 367 |
+
|
| 368 |
+
metrics_table_train=metrics_table_train.set_index('Metric').transpose()
|
| 369 |
+
metrics_table_train.index=['Train']
|
| 370 |
+
metrics_table_test=metrics_table_test.set_index('Metric').transpose()
|
| 371 |
+
metrics_table_test.index=['test']
|
| 372 |
+
metrics_table=np.round(pd.concat([metrics_table_train,metrics_table_test]),2)
|
| 373 |
+
|
| 374 |
+
st.markdown('Result Overview')
|
| 375 |
+
st.dataframe(np.round(metrics_table,2),use_container_width=True)
|
| 376 |
+
|
| 377 |
+
st.subheader('Actual vs Predicted Plot Train')
|
| 378 |
+
|
| 379 |
+
st.plotly_chart(fig_train,use_container_width=True)
|
| 380 |
+
st.subheader('Actual vs Predicted Plot Test')
|
| 381 |
+
st.plotly_chart(fig_test,use_container_width=True)
|
| 382 |
+
|
| 383 |
+
st.markdown('## Residual Analysis')
|
| 384 |
+
columns=st.columns(2)
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
Xtrain1=X_train.copy()
|
| 388 |
+
with columns[0]:
|
| 389 |
+
fig=plot_residual_predicted(y_train,model.predict(Xtrain1),Xtrain1)
|
| 390 |
+
st.plotly_chart(fig)
|
| 391 |
+
|
| 392 |
+
with columns[1]:
|
| 393 |
+
st.empty()
|
| 394 |
+
fig = qqplot(y_train,model.predict(X_train))
|
| 395 |
+
st.plotly_chart(fig)
|
| 396 |
+
|
| 397 |
+
with columns[0]:
|
| 398 |
+
fig=residual_distribution(y_train,model.predict(X_train))
|
| 399 |
+
st.pyplot(fig)
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
elif auth_status == False:
|
| 404 |
+
st.error('Username/Password is incorrect')
|
| 405 |
+
try:
|
| 406 |
+
username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
|
| 407 |
+
if username_forgot_pw:
|
| 408 |
+
st.success('New password sent securely')
|
| 409 |
+
# Random password to be transferred to the user securely
|
| 410 |
+
elif username_forgot_pw == False:
|
| 411 |
+
st.error('Username not found')
|
| 412 |
+
except Exception as e:
|
| 413 |
+
st.error(e)
|
pages/5_Model_Result_Overview.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from utilities import (set_header,
|
| 3 |
+
initialize_data,
|
| 4 |
+
load_local_css,
|
| 5 |
+
create_channel_summary,
|
| 6 |
+
create_contribution_pie,
|
| 7 |
+
create_contribuion_stacked_plot,
|
| 8 |
+
create_channel_spends_sales_plot,
|
| 9 |
+
format_numbers,
|
| 10 |
+
channel_name_formating,
|
| 11 |
+
load_authenticator)
|
| 12 |
+
import plotly.graph_objects as go
|
| 13 |
+
import streamlit_authenticator as stauth
|
| 14 |
+
import yaml
|
| 15 |
+
from yaml import SafeLoader
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
st.set_page_config(layout='wide')
|
| 19 |
+
load_local_css('styles.css')
|
| 20 |
+
set_header()
|
| 21 |
+
|
| 22 |
+
target='Revenue'
|
| 23 |
+
# for k, v in st.session_state.items():
|
| 24 |
+
|
| 25 |
+
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
| 26 |
+
# st.session_state[k] = v
|
| 27 |
+
|
| 28 |
+
# authenticator = st.session_state.get('authenticator')
|
| 29 |
+
|
| 30 |
+
# if authenticator is None:
|
| 31 |
+
# authenticator = load_authenticator()
|
| 32 |
+
|
| 33 |
+
# name, authentication_status, username = authenticator.login('Login', 'main')
|
| 34 |
+
# auth_status = st.session_state['authentication_status']
|
| 35 |
+
|
| 36 |
+
# if auth_status:
|
| 37 |
+
# authenticator.logout('Logout', 'main')
|
| 38 |
+
|
| 39 |
+
# is_state_initiaized = st.session_state.get('initialized',False)
|
| 40 |
+
# if not is_state_initiaized:
|
| 41 |
+
initialize_data()
|
| 42 |
+
scenario = st.session_state['scenario']
|
| 43 |
+
raw_df = st.session_state['raw_df']
|
| 44 |
+
st.header('Overview of previous spends')
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
columns = st.columns((1,1,3))
|
| 48 |
+
|
| 49 |
+
with columns[0]:
|
| 50 |
+
st.metric(label = 'Spends', value=format_numbers(float(scenario.actual_total_spends)))
|
| 51 |
+
###print(f"##################### {scenario.actual_total_sales} ##################")
|
| 52 |
+
with columns[1]:
|
| 53 |
+
st.metric(label = target, value=format_numbers(float(scenario.actual_total_sales),include_indicator=False))
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
actual_summary_df = create_channel_summary(scenario)
|
| 57 |
+
actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
|
| 58 |
+
|
| 59 |
+
columns = st.columns((2,1))
|
| 60 |
+
with columns[0]:
|
| 61 |
+
with st.expander('Channel wise overview'):
|
| 62 |
+
st.markdown(actual_summary_df.style.set_table_styles(
|
| 63 |
+
[{
|
| 64 |
+
'selector': 'th',
|
| 65 |
+
'props': [('background-color', '#11B6BD')]
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
'selector' : 'tr:nth-child(even)',
|
| 69 |
+
'props' : [('background-color', '#11B6BD')]
|
| 70 |
+
}]).to_html(), unsafe_allow_html=True)
|
| 71 |
+
|
| 72 |
+
st.markdown("<hr>",unsafe_allow_html=True)
|
| 73 |
+
##############################
|
| 74 |
+
|
| 75 |
+
st.plotly_chart(create_contribution_pie(),use_container_width=True)
|
| 76 |
+
st.markdown("<hr>",unsafe_allow_html=True)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
################################3
|
| 80 |
+
st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
|
| 81 |
+
st.markdown("<hr>",unsafe_allow_html=True)
|
| 82 |
+
#######################################
|
| 83 |
+
|
| 84 |
+
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
|
| 85 |
+
selected_channel = scenario.channels.get(selected_channel_name,None)
|
| 86 |
+
|
| 87 |
+
st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
|
| 88 |
+
|
| 89 |
+
st.markdown("<hr>",unsafe_allow_html=True)
|
| 90 |
+
|
| 91 |
+
# elif auth_status == False:
|
| 92 |
+
# st.error('Username/Password is incorrect')
|
| 93 |
+
|
| 94 |
+
# if auth_status != True:
|
| 95 |
+
# try:
|
| 96 |
+
# username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
|
| 97 |
+
# if username_forgot_pw:
|
| 98 |
+
# st.success('New password sent securely')
|
| 99 |
+
# # Random password to be transferred to user securely
|
| 100 |
+
# elif username_forgot_pw == False:
|
| 101 |
+
# st.error('Username not found')
|
| 102 |
+
# except Exception as e:
|
| 103 |
+
# st.error(e)
|
pages/6_Build_Response_Curves.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import plotly.express as px
|
| 3 |
+
import numpy as np
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
from utilities import channel_name_formating, load_authenticator, initialize_data
|
| 6 |
+
from sklearn.metrics import r2_score
|
| 7 |
+
from collections import OrderedDict
|
| 8 |
+
from classes import class_from_dict,class_to_dict
|
| 9 |
+
import pickle
|
| 10 |
+
import json
|
| 11 |
+
|
| 12 |
+
for k, v in st.session_state.items():
|
| 13 |
+
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
| 14 |
+
st.session_state[k] = v
|
| 15 |
+
|
| 16 |
+
def s_curve(x,K,b,a,x0):
|
| 17 |
+
return K / (1 + b*np.exp(-a*(x-x0)))
|
| 18 |
+
|
| 19 |
+
def save_scenario(scenario_name):
|
| 20 |
+
"""
|
| 21 |
+
Save the current scenario with the mentioned name in the session state
|
| 22 |
+
|
| 23 |
+
Parameters
|
| 24 |
+
----------
|
| 25 |
+
scenario_name
|
| 26 |
+
Name of the scenario to be saved
|
| 27 |
+
"""
|
| 28 |
+
if 'saved_scenarios' not in st.session_state:
|
| 29 |
+
st.session_state = OrderedDict()
|
| 30 |
+
|
| 31 |
+
#st.session_state['saved_scenarios'][scenario_name] = st.session_state['scenario'].save()
|
| 32 |
+
st.session_state['saved_scenarios'][scenario_name] = class_to_dict(st.session_state['scenario'])
|
| 33 |
+
st.session_state['scenario_input'] = ""
|
| 34 |
+
print(type(st.session_state['saved_scenarios']))
|
| 35 |
+
with open('../saved_scenarios.pkl', 'wb') as f:
|
| 36 |
+
pickle.dump(st.session_state['saved_scenarios'],f)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def reset_curve_parameters():
|
| 40 |
+
del st.session_state['K']
|
| 41 |
+
del st.session_state['b']
|
| 42 |
+
del st.session_state['a']
|
| 43 |
+
del st.session_state['x0']
|
| 44 |
+
|
| 45 |
+
def update_response_curve():
|
| 46 |
+
# st.session_state['rcs'][selected_channel_name]['K'] = st.session_state['K']
|
| 47 |
+
# st.session_state['rcs'][selected_channel_name]['b'] = st.session_state['b']
|
| 48 |
+
# st.session_state['rcs'][selected_channel_name]['a'] = st.session_state['a']
|
| 49 |
+
# st.session_state['rcs'][selected_channel_name]['x0'] = st.session_state['x0']
|
| 50 |
+
# rcs = st.session_state['rcs']
|
| 51 |
+
_channel_class = st.session_state['scenario'].channels[selected_channel_name]
|
| 52 |
+
_channel_class.update_response_curves({
|
| 53 |
+
'K' : st.session_state['K'],
|
| 54 |
+
'b' : st.session_state['b'],
|
| 55 |
+
'a' : st.session_state['a'],
|
| 56 |
+
'x0' : st.session_state['x0']})
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# authenticator = st.session_state.get('authenticator')
|
| 60 |
+
# if authenticator is None:
|
| 61 |
+
# authenticator = load_authenticator()
|
| 62 |
+
|
| 63 |
+
# name, authentication_status, username = authenticator.login('Login', 'main')
|
| 64 |
+
# auth_status = st.session_state.get('authentication_status')
|
| 65 |
+
|
| 66 |
+
# if auth_status == True:
|
| 67 |
+
# is_state_initiaized = st.session_state.get('initialized',False)
|
| 68 |
+
# if not is_state_initiaized:
|
| 69 |
+
# print("Scenario page state reloaded")
|
| 70 |
+
|
| 71 |
+
initialize_data()
|
| 72 |
+
|
| 73 |
+
st.subheader("Build response curves")
|
| 74 |
+
|
| 75 |
+
channels_list = st.session_state['channels_list']
|
| 76 |
+
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['Others'], format_func=channel_name_formating,on_change=reset_curve_parameters)
|
| 77 |
+
|
| 78 |
+
rcs = {}
|
| 79 |
+
for channel_name in channels_list:
|
| 80 |
+
rcs[channel_name] = st.session_state['scenario'].channels[channel_name].response_curve_params
|
| 81 |
+
# rcs = st.session_state['rcs']
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
if 'K' not in st.session_state:
|
| 85 |
+
st.session_state['K'] = rcs[selected_channel_name]['K']
|
| 86 |
+
if 'b' not in st.session_state:
|
| 87 |
+
st.session_state['b'] = rcs[selected_channel_name]['b']
|
| 88 |
+
if 'a' not in st.session_state:
|
| 89 |
+
st.session_state['a'] = rcs[selected_channel_name]['a']
|
| 90 |
+
if 'x0' not in st.session_state:
|
| 91 |
+
st.session_state['x0'] = rcs[selected_channel_name]['x0']
|
| 92 |
+
|
| 93 |
+
x = st.session_state['actual_input_df'][selected_channel_name].values
|
| 94 |
+
y = st.session_state['actual_contribution_df'][selected_channel_name].values
|
| 95 |
+
|
| 96 |
+
power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)
|
| 97 |
+
|
| 98 |
+
# fig = px.scatter(x, s_curve(x/10**power,
|
| 99 |
+
# st.session_state['K'],
|
| 100 |
+
# st.session_state['b'],
|
| 101 |
+
# st.session_state['a'],
|
| 102 |
+
# st.session_state['x0']))
|
| 103 |
+
|
| 104 |
+
fig = px.scatter(x=x, y=y)
|
| 105 |
+
fig.add_trace(go.Scatter(x=sorted(x), y=s_curve(sorted(x)/10**power,st.session_state['K'],
|
| 106 |
+
st.session_state['b'],
|
| 107 |
+
st.session_state['a'],
|
| 108 |
+
st.session_state['x0']),
|
| 109 |
+
line=dict(color='red')))
|
| 110 |
+
|
| 111 |
+
fig.update_layout(title_text="Response Curve",showlegend=False)
|
| 112 |
+
fig.update_annotations(font_size=10)
|
| 113 |
+
fig.update_xaxes(title='Spends')
|
| 114 |
+
fig.update_yaxes(title='Revenue')
|
| 115 |
+
|
| 116 |
+
st.plotly_chart(fig,use_container_width=True)
|
| 117 |
+
|
| 118 |
+
r2 = r2_score(y, s_curve(x / 10**power,
|
| 119 |
+
st.session_state['K'],
|
| 120 |
+
st.session_state['b'],
|
| 121 |
+
st.session_state['a'],
|
| 122 |
+
st.session_state['x0']))
|
| 123 |
+
|
| 124 |
+
st.metric('R2',round(r2,2))
|
| 125 |
+
columns = st.columns(4)
|
| 126 |
+
|
| 127 |
+
with columns[0]:
|
| 128 |
+
st.number_input('K',key='K',format="%0.5f")
|
| 129 |
+
with columns[1]:
|
| 130 |
+
st.number_input('b',key='b',format="%0.5f")
|
| 131 |
+
with columns[2]:
|
| 132 |
+
st.number_input('a',key='a',step=0.0001,format="%0.5f")
|
| 133 |
+
with columns[3]:
|
| 134 |
+
st.number_input('x0',key='x0',format="%0.5f")
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
st.button('Update parameters',on_click=update_response_curve)
|
| 138 |
+
st.button('Reset parameters',on_click=reset_curve_parameters)
|
| 139 |
+
scenario_name = st.text_input('Scenario name', key='scenario_input',placeholder='Scenario name',label_visibility='collapsed')
|
| 140 |
+
st.button('Save', on_click=lambda : save_scenario(scenario_name),disabled=len(st.session_state['scenario_input']) == 0)
|
| 141 |
+
|
| 142 |
+
file_name = st.text_input('rcs download file name', key='file_name_input',placeholder='file name',label_visibility='collapsed')
|
| 143 |
+
st.download_button(
|
| 144 |
+
label="Download response curves",
|
| 145 |
+
data=json.dumps(rcs),
|
| 146 |
+
file_name=f"{file_name}.json",
|
| 147 |
+
mime="application/json",
|
| 148 |
+
disabled= len(file_name) == 0,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def s_curve_derivative(x, K, b, a, x0):
|
| 153 |
+
# Derivative of the S-curve function
|
| 154 |
+
return a * b * K * np.exp(-a * (x - x0)) / ((1 + b * np.exp(-a * (x - x0))) ** 2)
|
| 155 |
+
|
| 156 |
+
# Parameters of the S-curve
|
| 157 |
+
K = st.session_state['K']
|
| 158 |
+
b = st.session_state['b']
|
| 159 |
+
a = st.session_state['a']
|
| 160 |
+
x0 = st.session_state['x0']
|
| 161 |
+
|
| 162 |
+
# Optimized spend value obtained from the tool
|
| 163 |
+
optimized_spend = st.number_input('value of x') # Replace this with your optimized spend value
|
| 164 |
+
|
| 165 |
+
# Calculate the slope at the optimized spend value
|
| 166 |
+
slope_at_optimized_spend = s_curve_derivative(optimized_spend, K, b, a, x0)
|
| 167 |
+
|
| 168 |
+
st.write("Slope ", slope_at_optimized_spend)
|
pages/8_Scenario_Planner.py
ADDED
|
@@ -0,0 +1,1133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from numerize.numerize import numerize
|
| 3 |
+
import numpy as np
|
| 4 |
+
from functools import partial
|
| 5 |
+
from collections import OrderedDict
|
| 6 |
+
from plotly.subplots import make_subplots
|
| 7 |
+
import plotly.graph_objects as go
|
| 8 |
+
from utilities import (
|
| 9 |
+
format_numbers,
|
| 10 |
+
load_local_css,
|
| 11 |
+
set_header,
|
| 12 |
+
initialize_data,
|
| 13 |
+
load_authenticator,
|
| 14 |
+
send_email,
|
| 15 |
+
channel_name_formating,
|
| 16 |
+
)
|
| 17 |
+
from classes import class_from_dict, class_to_dict
|
| 18 |
+
import pickle
|
| 19 |
+
import streamlit_authenticator as stauth
|
| 20 |
+
import yaml
|
| 21 |
+
from yaml import SafeLoader
|
| 22 |
+
import re
|
| 23 |
+
import pandas as pd
|
| 24 |
+
import plotly.express as px
|
| 25 |
+
|
| 26 |
+
target = "Revenue"
|
| 27 |
+
st.set_page_config(layout="wide")
|
| 28 |
+
load_local_css("styles.css")
|
| 29 |
+
set_header()
|
| 30 |
+
|
| 31 |
+
for k, v in st.session_state.items():
|
| 32 |
+
if k not in ["logout", "login", "config"] and not k.startswith(
|
| 33 |
+
"FormSubmitter"
|
| 34 |
+
):
|
| 35 |
+
st.session_state[k] = v
|
| 36 |
+
# ======================================================== #
|
| 37 |
+
# ======================= Functions ====================== #
|
| 38 |
+
# ======================================================== #
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def optimize(key):
|
| 42 |
+
"""
|
| 43 |
+
Optimize the spends for the sales
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
channel_list = [
|
| 47 |
+
key
|
| 48 |
+
for key, value in st.session_state["optimization_channels"].items()
|
| 49 |
+
if value
|
| 50 |
+
]
|
| 51 |
+
# print('channel_list')
|
| 52 |
+
# print(channel_list)
|
| 53 |
+
# print('@@@@@@@@')
|
| 54 |
+
if len(channel_list) > 0:
|
| 55 |
+
scenario = st.session_state["scenario"]
|
| 56 |
+
if key.lower() == "spends":
|
| 57 |
+
with status_placeholder:
|
| 58 |
+
with st.spinner("Optimizing"):
|
| 59 |
+
result = st.session_state["scenario"].optimize(
|
| 60 |
+
st.session_state["total_spends_change"], channel_list
|
| 61 |
+
)
|
| 62 |
+
elif key.lower() == "sales":
|
| 63 |
+
with status_placeholder:
|
| 64 |
+
with st.spinner("Optimizing"):
|
| 65 |
+
|
| 66 |
+
result = st.session_state["scenario"].optimize_spends(
|
| 67 |
+
st.session_state["total_sales_change"], channel_list
|
| 68 |
+
)
|
| 69 |
+
for channel_name, modified_spends in result:
|
| 70 |
+
|
| 71 |
+
st.session_state[channel_name] = numerize(
|
| 72 |
+
modified_spends
|
| 73 |
+
* scenario.channels[channel_name].conversion_rate,
|
| 74 |
+
1,
|
| 75 |
+
)
|
| 76 |
+
prev_spends = (
|
| 77 |
+
st.session_state["scenario"]
|
| 78 |
+
.channels[channel_name]
|
| 79 |
+
.actual_total_spends
|
| 80 |
+
)
|
| 81 |
+
st.session_state[f"{channel_name}_change"] = round(
|
| 82 |
+
100 * (modified_spends - prev_spends) / prev_spends, 2
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def save_scenario(scenario_name):
|
| 87 |
+
"""
|
| 88 |
+
Save the current scenario with the mentioned name in the session state
|
| 89 |
+
|
| 90 |
+
Parameters
|
| 91 |
+
----------
|
| 92 |
+
scenario_name
|
| 93 |
+
Name of the scenario to be saved
|
| 94 |
+
"""
|
| 95 |
+
if "saved_scenarios" not in st.session_state:
|
| 96 |
+
st.session_state = OrderedDict()
|
| 97 |
+
|
| 98 |
+
# st.session_state['saved_scenarios'][scenario_name] = st.session_state['scenario'].save()
|
| 99 |
+
st.session_state["saved_scenarios"][scenario_name] = class_to_dict(
|
| 100 |
+
st.session_state["scenario"]
|
| 101 |
+
)
|
| 102 |
+
st.session_state["scenario_input"] = ""
|
| 103 |
+
# print(type(st.session_state['saved_scenarios']))
|
| 104 |
+
with open("../saved_scenarios.pkl", "wb") as f:
|
| 105 |
+
pickle.dump(st.session_state["saved_scenarios"], f)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def update_sales_abs():
|
| 109 |
+
actual_sales = _scenario.actual_total_sales
|
| 110 |
+
if validate_input(st.session_state["total_sales_change_abs"]):
|
| 111 |
+
modified_sales = extract_number_for_string(
|
| 112 |
+
st.session_state["total_sales_change_abs"]
|
| 113 |
+
)
|
| 114 |
+
st.session_state["total_sales_change"] = round(
|
| 115 |
+
((modified_sales / actual_sales) - 1) * 100
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def update_sales():
|
| 120 |
+
st.session_state["total_sales_change_abs"] = numerize(
|
| 121 |
+
(1 + st.session_state["total_sales_change"] / 100)
|
| 122 |
+
* _scenario.actual_total_sales,
|
| 123 |
+
1,
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def update_all_spends_abs():
|
| 128 |
+
actual_spends = _scenario.actual_total_spends
|
| 129 |
+
if validate_input(st.session_state["total_spends_change_abs"]):
|
| 130 |
+
modified_spends = extract_number_for_string(
|
| 131 |
+
st.session_state["total_spends_change_abs"]
|
| 132 |
+
)
|
| 133 |
+
print(modified_spends)
|
| 134 |
+
print(actual_spends)
|
| 135 |
+
|
| 136 |
+
st.session_state["total_spends_change"] = (
|
| 137 |
+
(modified_spends / actual_spends) - 1
|
| 138 |
+
) * 100
|
| 139 |
+
|
| 140 |
+
update_all_spends()
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def update_all_spends():
|
| 144 |
+
"""
|
| 145 |
+
Updates spends for all the channels with the given overall spends change
|
| 146 |
+
"""
|
| 147 |
+
percent_change = st.session_state["total_spends_change"]
|
| 148 |
+
st.session_state["total_spends_change_abs"] = numerize(
|
| 149 |
+
(1 + percent_change / 100) * _scenario.actual_total_spends, 1
|
| 150 |
+
)
|
| 151 |
+
for channel_name in st.session_state["channels_list"]:
|
| 152 |
+
channel = st.session_state["scenario"].channels[channel_name]
|
| 153 |
+
current_spends = channel.actual_total_spends
|
| 154 |
+
modified_spends = (1 + percent_change / 100) * current_spends
|
| 155 |
+
st.session_state["scenario"].update(channel_name, modified_spends)
|
| 156 |
+
st.session_state[channel_name] = numerize(
|
| 157 |
+
modified_spends * channel.conversion_rate, 1
|
| 158 |
+
)
|
| 159 |
+
st.session_state[f"{channel_name}_change"] = percent_change
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def extract_number_for_string(string_input):
|
| 163 |
+
string_input = string_input.upper()
|
| 164 |
+
if string_input.endswith("K"):
|
| 165 |
+
return float(string_input[:-1]) * 10**3
|
| 166 |
+
elif string_input.endswith("M"):
|
| 167 |
+
return float(string_input[:-1]) * 10**6
|
| 168 |
+
elif string_input.endswith("B"):
|
| 169 |
+
return float(string_input[:-1]) * 10**9
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def validate_input(string_input):
|
| 173 |
+
pattern = r"\d+\.?\d*[K|M|B]$"
|
| 174 |
+
match = re.match(pattern, string_input)
|
| 175 |
+
if match is None:
|
| 176 |
+
return False
|
| 177 |
+
return True
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def update_data_by_percent(channel_name):
|
| 181 |
+
prev_spends = (
|
| 182 |
+
st.session_state["scenario"].channels[channel_name].actual_total_spends
|
| 183 |
+
* st.session_state["scenario"].channels[channel_name].conversion_rate
|
| 184 |
+
)
|
| 185 |
+
modified_spends = prev_spends * (
|
| 186 |
+
1 + st.session_state[f"{channel_name}_change"] / 100
|
| 187 |
+
)
|
| 188 |
+
st.session_state[channel_name] = numerize(modified_spends, 1)
|
| 189 |
+
st.session_state["scenario"].update(
|
| 190 |
+
channel_name,
|
| 191 |
+
modified_spends
|
| 192 |
+
/ st.session_state["scenario"].channels[channel_name].conversion_rate,
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def update_data(channel_name):
|
| 197 |
+
"""
|
| 198 |
+
Updates the spends for the given channel
|
| 199 |
+
"""
|
| 200 |
+
|
| 201 |
+
if validate_input(st.session_state[channel_name]):
|
| 202 |
+
modified_spends = extract_number_for_string(
|
| 203 |
+
st.session_state[channel_name]
|
| 204 |
+
)
|
| 205 |
+
prev_spends = (
|
| 206 |
+
st.session_state["scenario"]
|
| 207 |
+
.channels[channel_name]
|
| 208 |
+
.actual_total_spends
|
| 209 |
+
* st.session_state["scenario"]
|
| 210 |
+
.channels[channel_name]
|
| 211 |
+
.conversion_rate
|
| 212 |
+
)
|
| 213 |
+
st.session_state[f"{channel_name}_change"] = round(
|
| 214 |
+
100 * (modified_spends - prev_spends) / prev_spends, 2
|
| 215 |
+
)
|
| 216 |
+
st.session_state["scenario"].update(
|
| 217 |
+
channel_name,
|
| 218 |
+
modified_spends
|
| 219 |
+
/ st.session_state["scenario"]
|
| 220 |
+
.channels[channel_name]
|
| 221 |
+
.conversion_rate,
|
| 222 |
+
)
|
| 223 |
+
# st.session_state['scenario'].update(channel_name, modified_spends)
|
| 224 |
+
# else:
|
| 225 |
+
# try:
|
| 226 |
+
# modified_spends = float(st.session_state[channel_name])
|
| 227 |
+
# prev_spends = st.session_state['scenario'].channels[channel_name].actual_total_spends * st.session_state['scenario'].channels[channel_name].conversion_rate
|
| 228 |
+
# st.session_state[f'{channel_name}_change'] = round(100*(modified_spends - prev_spends) / prev_spends,2)
|
| 229 |
+
# st.session_state['scenario'].update(channel_name, modified_spends/st.session_state['scenario'].channels[channel_name].conversion_rate)
|
| 230 |
+
# st.session_state[f'{channel_name}'] = numerize(modified_spends,1)
|
| 231 |
+
# except ValueError:
|
| 232 |
+
# st.write('Invalid input')
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def select_channel_for_optimization(channel_name):
|
| 236 |
+
"""
|
| 237 |
+
Marks the given channel for optimization
|
| 238 |
+
"""
|
| 239 |
+
st.session_state["optimization_channels"][channel_name] = st.session_state[
|
| 240 |
+
f"{channel_name}_selected"
|
| 241 |
+
]
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def select_all_channels_for_optimization():
|
| 245 |
+
"""
|
| 246 |
+
Marks all the channel for optimization
|
| 247 |
+
"""
|
| 248 |
+
for channel_name in st.session_state["optimization_channels"].keys():
|
| 249 |
+
st.session_state[f"{channel_name}_selected"] = st.session_state[
|
| 250 |
+
"optimze_all_channels"
|
| 251 |
+
]
|
| 252 |
+
st.session_state["optimization_channels"][channel_name] = (
|
| 253 |
+
st.session_state["optimze_all_channels"]
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def update_penalty():
|
| 258 |
+
"""
|
| 259 |
+
Updates the penalty flag for sales calculation
|
| 260 |
+
"""
|
| 261 |
+
st.session_state["scenario"].update_penalty(
|
| 262 |
+
st.session_state["apply_penalty"]
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def reset_scenario():
|
| 267 |
+
# #print(st.session_state['default_scenario_dict'])
|
| 268 |
+
# st.session_state['scenario'] = class_from_dict(st.session_state['default_scenario_dict'])
|
| 269 |
+
# for channel in st.session_state['scenario'].channels.values():
|
| 270 |
+
# st.session_state[channel.name] = float(channel.actual_total_spends * channel.conversion_rate)
|
| 271 |
+
initialize_data()
|
| 272 |
+
for channel_name in st.session_state["channels_list"]:
|
| 273 |
+
st.session_state[f"{channel_name}_selected"] = False
|
| 274 |
+
st.session_state[f"{channel_name}_change"] = 0
|
| 275 |
+
st.session_state["optimze_all_channels"] = False
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def format_number(num):
|
| 279 |
+
if num >= 1_000_000:
|
| 280 |
+
return f"{num / 1_000_000:.2f}M"
|
| 281 |
+
elif num >= 1_000:
|
| 282 |
+
return f"{num / 1_000:.0f}K"
|
| 283 |
+
else:
|
| 284 |
+
return f"{num:.2f}"
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def summary_plot(data, x, y, title, text_column):
|
| 288 |
+
fig = px.bar(
|
| 289 |
+
data,
|
| 290 |
+
x=x,
|
| 291 |
+
y=y,
|
| 292 |
+
orientation="h",
|
| 293 |
+
title=title,
|
| 294 |
+
text=text_column,
|
| 295 |
+
color="Channel_name",
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
# Convert text_column to numeric values
|
| 299 |
+
data[text_column] = pd.to_numeric(data[text_column], errors="coerce")
|
| 300 |
+
|
| 301 |
+
# Update the format of the displayed text based on magnitude
|
| 302 |
+
fig.update_traces(
|
| 303 |
+
texttemplate="%{text:.2s}",
|
| 304 |
+
textposition="outside",
|
| 305 |
+
hovertemplate="%{x:.2s}",
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
fig.update_layout(
|
| 309 |
+
xaxis_title=x, yaxis_title="Channel Name", showlegend=False
|
| 310 |
+
)
|
| 311 |
+
return fig
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
def s_curve(x, K, b, a, x0):
|
| 315 |
+
return K / (1 + b * np.exp(-a * (x - x0)))
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def find_segment_value(x, roi, mroi):
|
| 319 |
+
start_value = x[0]
|
| 320 |
+
end_value = x[len(x) - 1]
|
| 321 |
+
|
| 322 |
+
# Condition for green region: Both MROI and ROI > 1
|
| 323 |
+
green_condition = (roi > 1) & (mroi > 1)
|
| 324 |
+
left_indices = np.where(green_condition)[0]
|
| 325 |
+
left_value = x[left_indices[0]] if left_indices.size > 0 else x[0]
|
| 326 |
+
|
| 327 |
+
right_indices = np.where(green_condition)[0]
|
| 328 |
+
right_value = x[right_indices[-1]] if right_indices.size > 0 else x[0]
|
| 329 |
+
|
| 330 |
+
return start_value, end_value, left_value, right_value
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
def calculate_rgba(
|
| 334 |
+
start_value, end_value, left_value, right_value, current_channel_spends
|
| 335 |
+
):
|
| 336 |
+
# Initialize alpha to None for clarity
|
| 337 |
+
alpha = None
|
| 338 |
+
|
| 339 |
+
# Determine the color and calculate relative_position and alpha based on the point's position
|
| 340 |
+
if start_value <= current_channel_spends <= left_value:
|
| 341 |
+
color = "yellow"
|
| 342 |
+
relative_position = (current_channel_spends - start_value) / (
|
| 343 |
+
left_value - start_value
|
| 344 |
+
)
|
| 345 |
+
alpha = 0.8 - (
|
| 346 |
+
0.6 * relative_position
|
| 347 |
+
) # Alpha decreases from start to end
|
| 348 |
+
|
| 349 |
+
elif left_value < current_channel_spends <= right_value:
|
| 350 |
+
color = "green"
|
| 351 |
+
relative_position = (current_channel_spends - left_value) / (
|
| 352 |
+
right_value - left_value
|
| 353 |
+
)
|
| 354 |
+
alpha = 0.8 - (
|
| 355 |
+
0.6 * relative_position
|
| 356 |
+
) # Alpha decreases from start to end
|
| 357 |
+
|
| 358 |
+
elif right_value < current_channel_spends <= end_value:
|
| 359 |
+
color = "red"
|
| 360 |
+
relative_position = (current_channel_spends - right_value) / (
|
| 361 |
+
end_value - right_value
|
| 362 |
+
)
|
| 363 |
+
alpha = 0.2 + (
|
| 364 |
+
0.6 * relative_position
|
| 365 |
+
) # Alpha increases from start to end
|
| 366 |
+
|
| 367 |
+
else:
|
| 368 |
+
# Default case, if the spends are outside the defined ranges
|
| 369 |
+
return "rgba(136, 136, 136, 0.5)" # Grey for values outside the range
|
| 370 |
+
|
| 371 |
+
# Ensure alpha is within the intended range in case of any calculation overshoot
|
| 372 |
+
alpha = max(0.2, min(alpha, 0.8))
|
| 373 |
+
|
| 374 |
+
# Define color codes for RGBA
|
| 375 |
+
color_codes = {
|
| 376 |
+
"yellow": "255, 255, 0", # RGB for yellow
|
| 377 |
+
"green": "0, 128, 0", # RGB for green
|
| 378 |
+
"red": "255, 0, 0", # RGB for red
|
| 379 |
+
}
|
| 380 |
+
|
| 381 |
+
rgba = f"rgba({color_codes[color]}, {alpha})"
|
| 382 |
+
return rgba
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
def debug_temp(x_test, power, K, b, a, x0):
|
| 386 |
+
print("*" * 100)
|
| 387 |
+
# Calculate the count of bins
|
| 388 |
+
count_lower_bin = sum(1 for x in x_test if x <= 2524)
|
| 389 |
+
count_center_bin = sum(1 for x in x_test if x > 2524 and x <= 3377)
|
| 390 |
+
count_ = sum(1 for x in x_test if x > 3377)
|
| 391 |
+
|
| 392 |
+
print(
|
| 393 |
+
f"""
|
| 394 |
+
lower : {count_lower_bin}
|
| 395 |
+
center : {count_center_bin}
|
| 396 |
+
upper : {count_}
|
| 397 |
+
"""
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
# @st.cache
|
| 402 |
+
def plot_response_curves():
|
| 403 |
+
cols = 4
|
| 404 |
+
rows = (
|
| 405 |
+
len(channels_list) // cols
|
| 406 |
+
if len(channels_list) % cols == 0
|
| 407 |
+
else len(channels_list) // cols + 1
|
| 408 |
+
)
|
| 409 |
+
rcs = st.session_state["rcs"]
|
| 410 |
+
shapes = []
|
| 411 |
+
fig = make_subplots(rows=rows, cols=cols, subplot_titles=channels_list)
|
| 412 |
+
for i in range(0, len(channels_list)):
|
| 413 |
+
col = channels_list[i]
|
| 414 |
+
x_actual = st.session_state["scenario"].channels[col].actual_spends
|
| 415 |
+
# x_modified = st.session_state["scenario"].channels[col].modified_spends
|
| 416 |
+
|
| 417 |
+
power = np.ceil(np.log(x_actual.max()) / np.log(10)) - 3
|
| 418 |
+
|
| 419 |
+
K = rcs[col]["K"]
|
| 420 |
+
b = rcs[col]["b"]
|
| 421 |
+
a = rcs[col]["a"]
|
| 422 |
+
x0 = rcs[col]["x0"]
|
| 423 |
+
|
| 424 |
+
x_plot = np.linspace(0, 5 * x_actual.sum(), 50)
|
| 425 |
+
|
| 426 |
+
x, y, marginal_roi = [], [], []
|
| 427 |
+
for x_p in x_plot:
|
| 428 |
+
x.append(x_p * x_actual / x_actual.sum())
|
| 429 |
+
|
| 430 |
+
for index in range(len(x_plot)):
|
| 431 |
+
y.append(s_curve(x[index] / 10**power, K, b, a, x0))
|
| 432 |
+
|
| 433 |
+
for index in range(len(x_plot)):
|
| 434 |
+
marginal_roi.append(
|
| 435 |
+
a
|
| 436 |
+
* y[index]
|
| 437 |
+
* (1 - y[index] / np.maximum(K, np.finfo(float).eps))
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
x = (
|
| 441 |
+
np.sum(x, axis=1)
|
| 442 |
+
* st.session_state["scenario"].channels[col].conversion_rate
|
| 443 |
+
)
|
| 444 |
+
y = np.sum(y, axis=1)
|
| 445 |
+
marginal_roi = (
|
| 446 |
+
np.average(marginal_roi, axis=1)
|
| 447 |
+
/ st.session_state["scenario"].channels[col].conversion_rate
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
roi = y / np.maximum(x, np.finfo(float).eps)
|
| 451 |
+
|
| 452 |
+
fig.add_trace(
|
| 453 |
+
go.Scatter(
|
| 454 |
+
x=x,
|
| 455 |
+
y=y,
|
| 456 |
+
name=col,
|
| 457 |
+
customdata=np.stack((roi, marginal_roi), axis=-1),
|
| 458 |
+
hovertemplate="Spend:%{x:$.2s}<br>Sale:%{y:$.2s}<br>ROI:%{customdata[0]:.3f}<br>MROI:%{customdata[1]:.3f}",
|
| 459 |
+
line=dict(color="blue"),
|
| 460 |
+
),
|
| 461 |
+
row=1 + (i) // cols,
|
| 462 |
+
col=i % cols + 1,
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
x_optimal = (
|
| 466 |
+
st.session_state["scenario"].channels[col].modified_total_spends
|
| 467 |
+
* st.session_state["scenario"].channels[col].conversion_rate
|
| 468 |
+
)
|
| 469 |
+
y_optimal = (
|
| 470 |
+
st.session_state["scenario"].channels[col].modified_total_sales
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
# if col == "Paid_social_others":
|
| 474 |
+
# debug_temp(x_optimal * x_actual / x_actual.sum(), power, K, b, a, x0)
|
| 475 |
+
|
| 476 |
+
fig.add_trace(
|
| 477 |
+
go.Scatter(
|
| 478 |
+
x=[x_optimal],
|
| 479 |
+
y=[y_optimal],
|
| 480 |
+
name=col,
|
| 481 |
+
legendgroup=col,
|
| 482 |
+
showlegend=False,
|
| 483 |
+
marker=dict(color=["black"]),
|
| 484 |
+
),
|
| 485 |
+
row=1 + (i) // cols,
|
| 486 |
+
col=i % cols + 1,
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
shapes.append(
|
| 490 |
+
go.layout.Shape(
|
| 491 |
+
type="line",
|
| 492 |
+
x0=0,
|
| 493 |
+
y0=y_optimal,
|
| 494 |
+
x1=x_optimal,
|
| 495 |
+
y1=y_optimal,
|
| 496 |
+
line_width=1,
|
| 497 |
+
line_dash="dash",
|
| 498 |
+
line_color="black",
|
| 499 |
+
xref=f"x{i+1}",
|
| 500 |
+
yref=f"y{i+1}",
|
| 501 |
+
)
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
shapes.append(
|
| 505 |
+
go.layout.Shape(
|
| 506 |
+
type="line",
|
| 507 |
+
x0=x_optimal,
|
| 508 |
+
y0=0,
|
| 509 |
+
x1=x_optimal,
|
| 510 |
+
y1=y_optimal,
|
| 511 |
+
line_width=1,
|
| 512 |
+
line_dash="dash",
|
| 513 |
+
line_color="black",
|
| 514 |
+
xref=f"x{i+1}",
|
| 515 |
+
yref=f"y{i+1}",
|
| 516 |
+
)
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
start_value, end_value, left_value, right_value = find_segment_value(
|
| 520 |
+
x,
|
| 521 |
+
roi,
|
| 522 |
+
marginal_roi,
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
# Adding background colors
|
| 526 |
+
y_max = y.max() * 1.3 # 30% extra space above the max
|
| 527 |
+
|
| 528 |
+
# Yellow region
|
| 529 |
+
shapes.append(
|
| 530 |
+
go.layout.Shape(
|
| 531 |
+
type="rect",
|
| 532 |
+
x0=start_value,
|
| 533 |
+
y0=0,
|
| 534 |
+
x1=left_value,
|
| 535 |
+
y1=y_max,
|
| 536 |
+
line=dict(width=0),
|
| 537 |
+
fillcolor="rgba(255, 255, 0, 0.3)",
|
| 538 |
+
layer="below",
|
| 539 |
+
xref=f"x{i+1}",
|
| 540 |
+
yref=f"y{i+1}",
|
| 541 |
+
)
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
# Green region
|
| 545 |
+
shapes.append(
|
| 546 |
+
go.layout.Shape(
|
| 547 |
+
type="rect",
|
| 548 |
+
x0=left_value,
|
| 549 |
+
y0=0,
|
| 550 |
+
x1=right_value,
|
| 551 |
+
y1=y_max,
|
| 552 |
+
line=dict(width=0),
|
| 553 |
+
fillcolor="rgba(0, 255, 0, 0.3)",
|
| 554 |
+
layer="below",
|
| 555 |
+
xref=f"x{i+1}",
|
| 556 |
+
yref=f"y{i+1}",
|
| 557 |
+
)
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
# Red region
|
| 561 |
+
shapes.append(
|
| 562 |
+
go.layout.Shape(
|
| 563 |
+
type="rect",
|
| 564 |
+
x0=right_value,
|
| 565 |
+
y0=0,
|
| 566 |
+
x1=end_value,
|
| 567 |
+
y1=y_max,
|
| 568 |
+
line=dict(width=0),
|
| 569 |
+
fillcolor="rgba(255, 0, 0, 0.3)",
|
| 570 |
+
layer="below",
|
| 571 |
+
xref=f"x{i+1}",
|
| 572 |
+
yref=f"y{i+1}",
|
| 573 |
+
)
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
fig.update_layout(
|
| 577 |
+
# height=1000,
|
| 578 |
+
# width=1000,
|
| 579 |
+
title_text="Response Curves (X: Spends Vs Y: Revenue)",
|
| 580 |
+
showlegend=False,
|
| 581 |
+
shapes=shapes,
|
| 582 |
+
)
|
| 583 |
+
fig.update_annotations(font_size=10)
|
| 584 |
+
# fig.update_xaxes(title="Spends")
|
| 585 |
+
# fig.update_yaxes(title=target)
|
| 586 |
+
fig.update_yaxes(
|
| 587 |
+
gridcolor="rgba(136, 136, 136, 0.5)", gridwidth=0.5, griddash="dash"
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
return fig
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
# @st.cache
|
| 594 |
+
# def plot_response_curves():
|
| 595 |
+
# cols = 4
|
| 596 |
+
# rcs = st.session_state["rcs"]
|
| 597 |
+
# shapes = []
|
| 598 |
+
# fig = make_subplots(rows=6, cols=cols, subplot_titles=channels_list)
|
| 599 |
+
# for i in range(0, len(channels_list)):
|
| 600 |
+
# col = channels_list[i]
|
| 601 |
+
# x = st.session_state["actual_df"][col].values
|
| 602 |
+
# spends = x.sum()
|
| 603 |
+
# power = np.ceil(np.log(x.max()) / np.log(10)) - 3
|
| 604 |
+
# x = np.linspace(0, 3 * x.max(), 200)
|
| 605 |
+
|
| 606 |
+
# K = rcs[col]["K"]
|
| 607 |
+
# b = rcs[col]["b"]
|
| 608 |
+
# a = rcs[col]["a"]
|
| 609 |
+
# x0 = rcs[col]["x0"]
|
| 610 |
+
|
| 611 |
+
# y = s_curve(x / 10**power, K, b, a, x0)
|
| 612 |
+
# roi = y / x
|
| 613 |
+
# marginal_roi = a * (y) * (1 - y / K)
|
| 614 |
+
# fig.add_trace(
|
| 615 |
+
# go.Scatter(
|
| 616 |
+
# x=52
|
| 617 |
+
# * x
|
| 618 |
+
# * st.session_state["scenario"].channels[col].conversion_rate,
|
| 619 |
+
# y=52 * y,
|
| 620 |
+
# name=col,
|
| 621 |
+
# customdata=np.stack((roi, marginal_roi), axis=-1),
|
| 622 |
+
# hovertemplate="Spend:%{x:$.2s}<br>Sale:%{y:$.2s}<br>ROI:%{customdata[0]:.3f}<br>MROI:%{customdata[1]:.3f}",
|
| 623 |
+
# ),
|
| 624 |
+
# row=1 + (i) // cols,
|
| 625 |
+
# col=i % cols + 1,
|
| 626 |
+
# )
|
| 627 |
+
|
| 628 |
+
# fig.add_trace(
|
| 629 |
+
# go.Scatter(
|
| 630 |
+
# x=[
|
| 631 |
+
# spends
|
| 632 |
+
# * st.session_state["scenario"]
|
| 633 |
+
# .channels[col]
|
| 634 |
+
# .conversion_rate
|
| 635 |
+
# ],
|
| 636 |
+
# y=[52 * s_curve(spends / (10**power * 52), K, b, a, x0)],
|
| 637 |
+
# name=col,
|
| 638 |
+
# legendgroup=col,
|
| 639 |
+
# showlegend=False,
|
| 640 |
+
# marker=dict(color=["black"]),
|
| 641 |
+
# ),
|
| 642 |
+
# row=1 + (i) // cols,
|
| 643 |
+
# col=i % cols + 1,
|
| 644 |
+
# )
|
| 645 |
+
|
| 646 |
+
# shapes.append(
|
| 647 |
+
# go.layout.Shape(
|
| 648 |
+
# type="line",
|
| 649 |
+
# x0=0,
|
| 650 |
+
# y0=52 * s_curve(spends / (10**power * 52), K, b, a, x0),
|
| 651 |
+
# x1=spends
|
| 652 |
+
# * st.session_state["scenario"].channels[col].conversion_rate,
|
| 653 |
+
# y1=52 * s_curve(spends / (10**power * 52), K, b, a, x0),
|
| 654 |
+
# line_width=1,
|
| 655 |
+
# line_dash="dash",
|
| 656 |
+
# line_color="black",
|
| 657 |
+
# xref=f"x{i+1}",
|
| 658 |
+
# yref=f"y{i+1}",
|
| 659 |
+
# )
|
| 660 |
+
# )
|
| 661 |
+
|
| 662 |
+
# shapes.append(
|
| 663 |
+
# go.layout.Shape(
|
| 664 |
+
# type="line",
|
| 665 |
+
# x0=spends
|
| 666 |
+
# * st.session_state["scenario"].channels[col].conversion_rate,
|
| 667 |
+
# y0=0,
|
| 668 |
+
# x1=spends
|
| 669 |
+
# * st.session_state["scenario"].channels[col].conversion_rate,
|
| 670 |
+
# y1=52 * s_curve(spends / (10**power * 52), K, b, a, x0),
|
| 671 |
+
# line_width=1,
|
| 672 |
+
# line_dash="dash",
|
| 673 |
+
# line_color="black",
|
| 674 |
+
# xref=f"x{i+1}",
|
| 675 |
+
# yref=f"y{i+1}",
|
| 676 |
+
# )
|
| 677 |
+
# )
|
| 678 |
+
|
| 679 |
+
# fig.update_layout(
|
| 680 |
+
# height=1500,
|
| 681 |
+
# width=1000,
|
| 682 |
+
# title_text="Response Curves",
|
| 683 |
+
# showlegend=False,
|
| 684 |
+
# shapes=shapes,
|
| 685 |
+
# )
|
| 686 |
+
# fig.update_annotations(font_size=10)
|
| 687 |
+
# fig.update_xaxes(title="Spends")
|
| 688 |
+
# fig.update_yaxes(title=target)
|
| 689 |
+
# return fig
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
# ======================================================== #
|
| 693 |
+
# ==================== HTML Components =================== #
|
| 694 |
+
# ======================================================== #
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
def generate_spending_header(heading):
|
| 698 |
+
return st.markdown(
|
| 699 |
+
f"""<h2 class="spends-header">{heading}</h2>""", unsafe_allow_html=True
|
| 700 |
+
)
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
# ======================================================== #
|
| 704 |
+
# =================== Session variables ================== #
|
| 705 |
+
# ======================================================== #
|
| 706 |
+
|
| 707 |
+
with open("config.yaml") as file:
|
| 708 |
+
config = yaml.load(file, Loader=SafeLoader)
|
| 709 |
+
st.session_state["config"] = config
|
| 710 |
+
|
| 711 |
+
authenticator = stauth.Authenticate(
|
| 712 |
+
config["credentials"],
|
| 713 |
+
config["cookie"]["name"],
|
| 714 |
+
config["cookie"]["key"],
|
| 715 |
+
config["cookie"]["expiry_days"],
|
| 716 |
+
config["preauthorized"],
|
| 717 |
+
)
|
| 718 |
+
st.session_state["authenticator"] = authenticator
|
| 719 |
+
name, authentication_status, username = authenticator.login("Login", "main")
|
| 720 |
+
auth_status = st.session_state.get("authentication_status")
|
| 721 |
+
if auth_status == True:
|
| 722 |
+
authenticator.logout("Logout", "main")
|
| 723 |
+
is_state_initiaized = st.session_state.get("initialized", False)
|
| 724 |
+
if not is_state_initiaized:
|
| 725 |
+
initialize_data()
|
| 726 |
+
|
| 727 |
+
channels_list = st.session_state["channels_list"]
|
| 728 |
+
|
| 729 |
+
# ======================================================== #
|
| 730 |
+
# ========================== UI ========================== #
|
| 731 |
+
# ======================================================== #
|
| 732 |
+
|
| 733 |
+
# print(list(st.session_state.keys()))
|
| 734 |
+
|
| 735 |
+
st.header("Simulation")
|
| 736 |
+
main_header = st.columns((2, 2))
|
| 737 |
+
sub_header = st.columns((1, 1, 1, 1))
|
| 738 |
+
_scenario = st.session_state["scenario"]
|
| 739 |
+
|
| 740 |
+
if "total_spends_change_abs" not in st.session_state:
|
| 741 |
+
st.session_state["total_spends_change_abs"] = numerize(
|
| 742 |
+
_scenario.actual_total_spends, 1
|
| 743 |
+
)
|
| 744 |
+
|
| 745 |
+
if "total_sales_change_abs" not in st.session_state:
|
| 746 |
+
st.session_state["total_sales_change_abs"] = numerize(
|
| 747 |
+
_scenario.actual_total_sales, 1
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
with main_header[0]:
|
| 751 |
+
st.subheader("Actual")
|
| 752 |
+
|
| 753 |
+
with main_header[-1]:
|
| 754 |
+
st.subheader("Simulated")
|
| 755 |
+
|
| 756 |
+
with sub_header[0]:
|
| 757 |
+
st.metric(
|
| 758 |
+
label="Spends", value=format_numbers(_scenario.actual_total_spends)
|
| 759 |
+
)
|
| 760 |
+
|
| 761 |
+
with sub_header[1]:
|
| 762 |
+
st.metric(
|
| 763 |
+
label=target,
|
| 764 |
+
value=format_numbers(
|
| 765 |
+
float(_scenario.actual_total_sales), include_indicator=False
|
| 766 |
+
),
|
| 767 |
+
)
|
| 768 |
+
|
| 769 |
+
with sub_header[2]:
|
| 770 |
+
st.metric(
|
| 771 |
+
label="Spends",
|
| 772 |
+
value=format_numbers(_scenario.modified_total_spends),
|
| 773 |
+
delta=numerize(_scenario.delta_spends, 1),
|
| 774 |
+
)
|
| 775 |
+
|
| 776 |
+
with sub_header[3]:
|
| 777 |
+
st.metric(
|
| 778 |
+
label=target,
|
| 779 |
+
value=format_numbers(
|
| 780 |
+
float(_scenario.modified_total_sales), include_indicator=False
|
| 781 |
+
),
|
| 782 |
+
delta=numerize(_scenario.delta_sales, 1),
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
with st.expander("Channel Spends Simulator"):
|
| 786 |
+
_columns1 = st.columns((2, 2, 1, 1))
|
| 787 |
+
with _columns1[0]:
|
| 788 |
+
|
| 789 |
+
optimization_selection = st.selectbox(
|
| 790 |
+
"Optimize", options=["Spends", "Sales"], key="optimization_key"
|
| 791 |
+
)
|
| 792 |
+
with _columns1[1]:
|
| 793 |
+
st.markdown("#")
|
| 794 |
+
st.checkbox(
|
| 795 |
+
label="Optimize all Channels",
|
| 796 |
+
key=f"optimze_all_channels",
|
| 797 |
+
value=False,
|
| 798 |
+
on_change=select_all_channels_for_optimization,
|
| 799 |
+
)
|
| 800 |
+
|
| 801 |
+
with _columns1[2]:
|
| 802 |
+
st.markdown("#")
|
| 803 |
+
st.button(
|
| 804 |
+
"Optimize",
|
| 805 |
+
on_click=optimize,
|
| 806 |
+
args=(st.session_state["optimization_key"],),
|
| 807 |
+
)
|
| 808 |
+
|
| 809 |
+
with _columns1[3]:
|
| 810 |
+
st.markdown("#")
|
| 811 |
+
st.button("Reset", on_click=reset_scenario)
|
| 812 |
+
|
| 813 |
+
_columns2 = st.columns((2, 2, 2))
|
| 814 |
+
if st.session_state["optimization_key"] == "Spends":
|
| 815 |
+
with _columns2[0]:
|
| 816 |
+
spend_input = st.text_input(
|
| 817 |
+
"Absolute",
|
| 818 |
+
key="total_spends_change_abs",
|
| 819 |
+
# label_visibility="collapsed",
|
| 820 |
+
on_change=update_all_spends_abs,
|
| 821 |
+
)
|
| 822 |
+
with _columns2[1]:
|
| 823 |
+
|
| 824 |
+
st.number_input(
|
| 825 |
+
"Percent",
|
| 826 |
+
key=f"total_spends_change",
|
| 827 |
+
step=1,
|
| 828 |
+
on_change=update_all_spends,
|
| 829 |
+
)
|
| 830 |
+
elif st.session_state["optimization_key"] == "Sales":
|
| 831 |
+
with _columns2[0]:
|
| 832 |
+
|
| 833 |
+
sales_input = st.text_input(
|
| 834 |
+
"Absolute",
|
| 835 |
+
key="total_sales_change_abs",
|
| 836 |
+
on_change=update_sales_abs,
|
| 837 |
+
)
|
| 838 |
+
with _columns2[1]:
|
| 839 |
+
st.number_input(
|
| 840 |
+
"Percent change",
|
| 841 |
+
key=f"total_sales_change",
|
| 842 |
+
step=1,
|
| 843 |
+
on_change=update_sales,
|
| 844 |
+
)
|
| 845 |
+
|
| 846 |
+
with _columns2[2]:
|
| 847 |
+
st.markdown("#")
|
| 848 |
+
status_placeholder = st.empty()
|
| 849 |
+
|
| 850 |
+
st.markdown(
|
| 851 |
+
"""<hr class="spends-heading-seperator">""", unsafe_allow_html=True
|
| 852 |
+
)
|
| 853 |
+
_columns = st.columns((2.5, 2, 1.5, 1.5, 1))
|
| 854 |
+
with _columns[0]:
|
| 855 |
+
generate_spending_header("Channel")
|
| 856 |
+
with _columns[1]:
|
| 857 |
+
generate_spending_header("Spends Input")
|
| 858 |
+
with _columns[2]:
|
| 859 |
+
generate_spending_header("Spends")
|
| 860 |
+
with _columns[3]:
|
| 861 |
+
generate_spending_header(target)
|
| 862 |
+
with _columns[4]:
|
| 863 |
+
generate_spending_header("Optimize")
|
| 864 |
+
|
| 865 |
+
st.markdown(
|
| 866 |
+
"""<hr class="spends-heading-seperator">""", unsafe_allow_html=True
|
| 867 |
+
)
|
| 868 |
+
|
| 869 |
+
if "acutual_predicted" not in st.session_state:
|
| 870 |
+
st.session_state["acutual_predicted"] = {
|
| 871 |
+
"Channel_name": [],
|
| 872 |
+
"Actual_spend": [],
|
| 873 |
+
"Optimized_spend": [],
|
| 874 |
+
"Delta": [],
|
| 875 |
+
}
|
| 876 |
+
for i, channel_name in enumerate(channels_list):
|
| 877 |
+
_channel_class = st.session_state["scenario"].channels[
|
| 878 |
+
channel_name
|
| 879 |
+
]
|
| 880 |
+
_columns = st.columns((2.5, 1.5, 1.5, 1.5, 1))
|
| 881 |
+
with _columns[0]:
|
| 882 |
+
st.write(channel_name_formating(channel_name))
|
| 883 |
+
bin_placeholder = st.container()
|
| 884 |
+
|
| 885 |
+
with _columns[1]:
|
| 886 |
+
channel_bounds = _channel_class.bounds
|
| 887 |
+
channel_spends = float(_channel_class.actual_total_spends)
|
| 888 |
+
min_value = float(
|
| 889 |
+
(1 + channel_bounds[0] / 100) * channel_spends
|
| 890 |
+
)
|
| 891 |
+
max_value = float(
|
| 892 |
+
(1 + channel_bounds[1] / 100) * channel_spends
|
| 893 |
+
)
|
| 894 |
+
##print(st.session_state[channel_name])
|
| 895 |
+
spend_input = st.text_input(
|
| 896 |
+
channel_name,
|
| 897 |
+
key=channel_name,
|
| 898 |
+
label_visibility="collapsed",
|
| 899 |
+
on_change=partial(update_data, channel_name),
|
| 900 |
+
)
|
| 901 |
+
if not validate_input(spend_input):
|
| 902 |
+
st.error("Invalid input")
|
| 903 |
+
|
| 904 |
+
st.number_input(
|
| 905 |
+
"Percent change",
|
| 906 |
+
key=f"{channel_name}_change",
|
| 907 |
+
step=1,
|
| 908 |
+
on_change=partial(update_data_by_percent, channel_name),
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
+
with _columns[2]:
|
| 912 |
+
# spends
|
| 913 |
+
current_channel_spends = float(
|
| 914 |
+
_channel_class.modified_total_spends
|
| 915 |
+
* _channel_class.conversion_rate
|
| 916 |
+
)
|
| 917 |
+
actual_channel_spends = float(
|
| 918 |
+
_channel_class.actual_total_spends
|
| 919 |
+
* _channel_class.conversion_rate
|
| 920 |
+
)
|
| 921 |
+
spends_delta = float(
|
| 922 |
+
_channel_class.delta_spends
|
| 923 |
+
* _channel_class.conversion_rate
|
| 924 |
+
)
|
| 925 |
+
st.session_state["acutual_predicted"]["Channel_name"].append(
|
| 926 |
+
channel_name
|
| 927 |
+
)
|
| 928 |
+
st.session_state["acutual_predicted"]["Actual_spend"].append(
|
| 929 |
+
actual_channel_spends
|
| 930 |
+
)
|
| 931 |
+
st.session_state["acutual_predicted"][
|
| 932 |
+
"Optimized_spend"
|
| 933 |
+
].append(current_channel_spends)
|
| 934 |
+
st.session_state["acutual_predicted"]["Delta"].append(
|
| 935 |
+
spends_delta
|
| 936 |
+
)
|
| 937 |
+
## REMOVE
|
| 938 |
+
st.metric(
|
| 939 |
+
"Spends",
|
| 940 |
+
format_numbers(current_channel_spends),
|
| 941 |
+
delta=numerize(spends_delta, 1),
|
| 942 |
+
label_visibility="collapsed",
|
| 943 |
+
)
|
| 944 |
+
|
| 945 |
+
with _columns[3]:
|
| 946 |
+
# sales
|
| 947 |
+
current_channel_sales = float(
|
| 948 |
+
_channel_class.modified_total_sales
|
| 949 |
+
)
|
| 950 |
+
actual_channel_sales = float(_channel_class.actual_total_sales)
|
| 951 |
+
sales_delta = float(_channel_class.delta_sales)
|
| 952 |
+
st.metric(
|
| 953 |
+
target,
|
| 954 |
+
format_numbers(
|
| 955 |
+
current_channel_sales, include_indicator=False
|
| 956 |
+
),
|
| 957 |
+
delta=numerize(sales_delta, 1),
|
| 958 |
+
label_visibility="collapsed",
|
| 959 |
+
)
|
| 960 |
+
|
| 961 |
+
with _columns[4]:
|
| 962 |
+
|
| 963 |
+
st.checkbox(
|
| 964 |
+
label="select for optimization",
|
| 965 |
+
key=f"{channel_name}_selected",
|
| 966 |
+
value=False,
|
| 967 |
+
on_change=partial(
|
| 968 |
+
select_channel_for_optimization, channel_name
|
| 969 |
+
),
|
| 970 |
+
label_visibility="collapsed",
|
| 971 |
+
)
|
| 972 |
+
|
| 973 |
+
st.markdown(
|
| 974 |
+
"""<hr class="spends-child-seperator">""",
|
| 975 |
+
unsafe_allow_html=True,
|
| 976 |
+
)
|
| 977 |
+
|
| 978 |
+
# Bins
|
| 979 |
+
col = channels_list[i]
|
| 980 |
+
x_actual = st.session_state["scenario"].channels[col].actual_spends
|
| 981 |
+
x_modified = (
|
| 982 |
+
st.session_state["scenario"].channels[col].modified_spends
|
| 983 |
+
)
|
| 984 |
+
|
| 985 |
+
x_total = x_modified.sum()
|
| 986 |
+
power = np.ceil(np.log(x_actual.max()) / np.log(10)) - 3
|
| 987 |
+
|
| 988 |
+
K = st.session_state["rcs"][col]["K"]
|
| 989 |
+
b = st.session_state["rcs"][col]["b"]
|
| 990 |
+
a = st.session_state["rcs"][col]["a"]
|
| 991 |
+
x0 = st.session_state["rcs"][col]["x0"]
|
| 992 |
+
|
| 993 |
+
x_plot = np.linspace(0, 5 * x_actual.sum(), 200)
|
| 994 |
+
|
| 995 |
+
x, y, marginal_roi = [], [], []
|
| 996 |
+
for x_p in x_plot:
|
| 997 |
+
x.append(x_p * x_actual / x_actual.sum())
|
| 998 |
+
|
| 999 |
+
for index in range(len(x_plot)):
|
| 1000 |
+
y.append(s_curve(x[index] / 10**power, K, b, a, x0))
|
| 1001 |
+
|
| 1002 |
+
for index in range(len(x_plot)):
|
| 1003 |
+
marginal_roi.append(
|
| 1004 |
+
a
|
| 1005 |
+
* y[index]
|
| 1006 |
+
* (1 - y[index] / np.maximum(K, np.finfo(float).eps))
|
| 1007 |
+
)
|
| 1008 |
+
|
| 1009 |
+
x = (
|
| 1010 |
+
np.sum(x, axis=1)
|
| 1011 |
+
* st.session_state["scenario"].channels[col].conversion_rate
|
| 1012 |
+
)
|
| 1013 |
+
y = np.sum(y, axis=1)
|
| 1014 |
+
marginal_roi = (
|
| 1015 |
+
np.average(marginal_roi, axis=1)
|
| 1016 |
+
/ st.session_state["scenario"].channels[col].conversion_rate
|
| 1017 |
+
)
|
| 1018 |
+
|
| 1019 |
+
roi = y / np.maximum(x, np.finfo(float).eps)
|
| 1020 |
+
|
| 1021 |
+
start_value, end_value, left_value, right_value = (
|
| 1022 |
+
find_segment_value(
|
| 1023 |
+
x,
|
| 1024 |
+
roi,
|
| 1025 |
+
marginal_roi,
|
| 1026 |
+
)
|
| 1027 |
+
)
|
| 1028 |
+
|
| 1029 |
+
rgba = calculate_rgba(
|
| 1030 |
+
start_value,
|
| 1031 |
+
end_value,
|
| 1032 |
+
left_value,
|
| 1033 |
+
right_value,
|
| 1034 |
+
current_channel_spends,
|
| 1035 |
+
)
|
| 1036 |
+
|
| 1037 |
+
# Protecting division by zero by adding a small epsilon to denominators
|
| 1038 |
+
roi_current = current_channel_sales / np.maximum(
|
| 1039 |
+
current_channel_spends, np.finfo(float).eps
|
| 1040 |
+
)
|
| 1041 |
+
marginal_roi_current = (
|
| 1042 |
+
st.session_state["scenario"]
|
| 1043 |
+
.channels[col]
|
| 1044 |
+
.get_marginal_roi("modified")
|
| 1045 |
+
)
|
| 1046 |
+
|
| 1047 |
+
with bin_placeholder:
|
| 1048 |
+
st.markdown(
|
| 1049 |
+
f"""
|
| 1050 |
+
<div style="
|
| 1051 |
+
border-radius: 12px;
|
| 1052 |
+
background-color: {rgba};
|
| 1053 |
+
padding: 10px;
|
| 1054 |
+
text-align: center;
|
| 1055 |
+
color: #006EC0;
|
| 1056 |
+
">
|
| 1057 |
+
<p style="margin: 0; font-size: 20px;">ROI: {round(roi_current,1)}</p>
|
| 1058 |
+
<p style="margin: 0; font-size: 20px;">Marginal ROI: {round(marginal_roi_current,1)}</p>
|
| 1059 |
+
</div>
|
| 1060 |
+
""",
|
| 1061 |
+
unsafe_allow_html=True,
|
| 1062 |
+
)
|
| 1063 |
+
|
| 1064 |
+
with st.expander("See Response Curves"):
|
| 1065 |
+
fig = plot_response_curves()
|
| 1066 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 1067 |
+
|
| 1068 |
+
_columns = st.columns(2)
|
| 1069 |
+
with _columns[0]:
|
| 1070 |
+
st.subheader("Save Scenario")
|
| 1071 |
+
scenario_name = st.text_input(
|
| 1072 |
+
"Scenario name",
|
| 1073 |
+
key="scenario_input",
|
| 1074 |
+
placeholder="Scenario name",
|
| 1075 |
+
label_visibility="collapsed",
|
| 1076 |
+
)
|
| 1077 |
+
st.button(
|
| 1078 |
+
"Save",
|
| 1079 |
+
on_click=lambda: save_scenario(scenario_name),
|
| 1080 |
+
disabled=len(st.session_state["scenario_input"]) == 0,
|
| 1081 |
+
)
|
| 1082 |
+
|
| 1083 |
+
summary_df = pd.DataFrame(st.session_state["acutual_predicted"])
|
| 1084 |
+
summary_df.drop_duplicates(
|
| 1085 |
+
subset="Channel_name", keep="last", inplace=True
|
| 1086 |
+
)
|
| 1087 |
+
|
| 1088 |
+
summary_df_sorted = summary_df.sort_values(by="Delta", ascending=False)
|
| 1089 |
+
summary_df_sorted["Delta_percent"] = np.round(
|
| 1090 |
+
(
|
| 1091 |
+
(
|
| 1092 |
+
summary_df_sorted["Optimized_spend"]
|
| 1093 |
+
/ summary_df_sorted["Actual_spend"]
|
| 1094 |
+
)
|
| 1095 |
+
- 1
|
| 1096 |
+
)
|
| 1097 |
+
* 100,
|
| 1098 |
+
2,
|
| 1099 |
+
)
|
| 1100 |
+
|
| 1101 |
+
with open("summary_df.pkl", "wb") as f:
|
| 1102 |
+
pickle.dump(summary_df_sorted, f)
|
| 1103 |
+
# st.dataframe(summary_df_sorted)
|
| 1104 |
+
# ___columns=st.columns(3)
|
| 1105 |
+
# with ___columns[2]:
|
| 1106 |
+
# fig=summary_plot(summary_df_sorted, x='Delta_percent', y='Channel_name', title='Delta', text_column='Delta_percent')
|
| 1107 |
+
# st.plotly_chart(fig,use_container_width=True)
|
| 1108 |
+
# with ___columns[0]:
|
| 1109 |
+
# fig=summary_plot(summary_df_sorted, x='Actual_spend', y='Channel_name', title='Actual Spend', text_column='Actual_spend')
|
| 1110 |
+
# st.plotly_chart(fig,use_container_width=True)
|
| 1111 |
+
# with ___columns[1]:
|
| 1112 |
+
# fig=summary_plot(summary_df_sorted, x='Optimized_spend', y='Channel_name', title='Planned Spend', text_column='Optimized_spend')
|
| 1113 |
+
# st.plotly_chart(fig,use_container_width=True)
|
| 1114 |
+
|
| 1115 |
+
elif auth_status == False:
|
| 1116 |
+
st.error("Username/Password is incorrect")
|
| 1117 |
+
|
| 1118 |
+
if auth_status != True:
|
| 1119 |
+
try:
|
| 1120 |
+
username_forgot_pw, email_forgot_password, random_password = (
|
| 1121 |
+
authenticator.forgot_password("Forgot password")
|
| 1122 |
+
)
|
| 1123 |
+
if username_forgot_pw:
|
| 1124 |
+
st.session_state["config"]["credentials"]["usernames"][
|
| 1125 |
+
username_forgot_pw
|
| 1126 |
+
]["password"] = stauth.Hasher([random_password]).generate()[0]
|
| 1127 |
+
send_email(email_forgot_password, random_password)
|
| 1128 |
+
st.success("New password sent securely")
|
| 1129 |
+
# Random password to be transferred to user securely
|
| 1130 |
+
elif username_forgot_pw == False:
|
| 1131 |
+
st.error("Username not found")
|
| 1132 |
+
except Exception as e:
|
| 1133 |
+
st.error(e)
|
pages/9_Saved_Scenarios.py
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from numerize.numerize import numerize
|
| 3 |
+
import io
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from utilities import (format_numbers,decimal_formater,
|
| 6 |
+
channel_name_formating,
|
| 7 |
+
load_local_css,set_header,
|
| 8 |
+
initialize_data,
|
| 9 |
+
load_authenticator)
|
| 10 |
+
from openpyxl import Workbook
|
| 11 |
+
from openpyxl.styles import Alignment,Font,PatternFill
|
| 12 |
+
import pickle
|
| 13 |
+
import streamlit_authenticator as stauth
|
| 14 |
+
import yaml
|
| 15 |
+
from yaml import SafeLoader
|
| 16 |
+
from classes import class_from_dict
|
| 17 |
+
|
| 18 |
+
st.set_page_config(layout='wide')
|
| 19 |
+
load_local_css('styles.css')
|
| 20 |
+
set_header()
|
| 21 |
+
|
| 22 |
+
# for k, v in st.session_state.items():
|
| 23 |
+
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
| 24 |
+
# st.session_state[k] = v
|
| 25 |
+
|
| 26 |
+
def create_scenario_summary(scenario_dict):
|
| 27 |
+
summary_rows = []
|
| 28 |
+
for channel_dict in scenario_dict['channels']:
|
| 29 |
+
name_mod = channel_name_formating(channel_dict['name'])
|
| 30 |
+
summary_rows.append([name_mod,
|
| 31 |
+
channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate'),
|
| 32 |
+
channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate'),
|
| 33 |
+
channel_dict.get('actual_total_sales') ,
|
| 34 |
+
channel_dict.get('modified_total_sales'),
|
| 35 |
+
channel_dict.get('actual_total_sales') / (channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate')),
|
| 36 |
+
channel_dict.get('modified_total_sales') / (channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate')),
|
| 37 |
+
channel_dict.get('actual_mroi'),
|
| 38 |
+
channel_dict.get('modified_mroi'),
|
| 39 |
+
channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('actual_total_sales'),
|
| 40 |
+
channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('modified_total_sales')])
|
| 41 |
+
|
| 42 |
+
summary_rows.append(['Total',
|
| 43 |
+
scenario_dict.get('actual_total_spends'),
|
| 44 |
+
scenario_dict.get('modified_total_spends'),
|
| 45 |
+
scenario_dict.get('actual_total_sales'),
|
| 46 |
+
scenario_dict.get('modified_total_sales'),
|
| 47 |
+
scenario_dict.get('actual_total_sales') / scenario_dict.get('actual_total_spends'),
|
| 48 |
+
scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'),
|
| 49 |
+
'-',
|
| 50 |
+
'-',
|
| 51 |
+
scenario_dict.get('actual_total_spends') / scenario_dict.get('actual_total_sales'),
|
| 52 |
+
scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')])
|
| 53 |
+
|
| 54 |
+
columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["first", "second"])
|
| 55 |
+
columns_index = columns_index.append(pd.MultiIndex.from_product([['Spends','NRPU','ROI','MROI','Spend per NRPU'],['Actual','Simulated']], names=["first", "second"]))
|
| 56 |
+
return pd.DataFrame(summary_rows, columns=columns_index)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def summary_df_to_worksheet(df, ws):
|
| 61 |
+
heading_fill = PatternFill(fill_type='solid',start_color='FF11B6BD',end_color='FF11B6BD')
|
| 62 |
+
for j,header in enumerate(df.columns.values):
|
| 63 |
+
col = j + 1
|
| 64 |
+
for i in range(1,3):
|
| 65 |
+
ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='FF11B6BD')
|
| 66 |
+
ws.cell(row=i,column=j+1).fill = heading_fill
|
| 67 |
+
if col > 1 and (col - 6)%5==0:
|
| 68 |
+
ws.merge_cells(start_row=1, end_row=1, start_column = col-3, end_column=col)
|
| 69 |
+
ws.cell(row=1,column=col).alignment = Alignment(horizontal='center')
|
| 70 |
+
for i,row in enumerate(df.itertuples()):
|
| 71 |
+
for j,value in enumerate(row):
|
| 72 |
+
if j == 0:
|
| 73 |
+
continue
|
| 74 |
+
elif (j-2)%4 == 0 or (j-3)%4 == 0:
|
| 75 |
+
ws.cell(row=i+3, column = j, value=value).number_format = '$#,##0.0'
|
| 76 |
+
else:
|
| 77 |
+
ws.cell(row=i+3, column = j, value=value)
|
| 78 |
+
|
| 79 |
+
from openpyxl.utils import get_column_letter
|
| 80 |
+
from openpyxl.styles import Font, PatternFill
|
| 81 |
+
import logging
|
| 82 |
+
|
| 83 |
+
def scenario_df_to_worksheet(df, ws):
|
| 84 |
+
heading_fill = PatternFill(start_color='FF11B6BD', end_color='FF11B6BD', fill_type='solid')
|
| 85 |
+
|
| 86 |
+
for j, header in enumerate(df.columns.values):
|
| 87 |
+
cell = ws.cell(row=1, column=j + 1, value=header)
|
| 88 |
+
cell.font = Font(bold=True, color='FF11B6BD')
|
| 89 |
+
cell.fill = heading_fill
|
| 90 |
+
|
| 91 |
+
for i, row in enumerate(df.itertuples()):
|
| 92 |
+
for j, value in enumerate(row[1:], start=1): # Start from index 1 to skip the index column
|
| 93 |
+
try:
|
| 94 |
+
cell = ws.cell(row=i + 2, column=j, value=value)
|
| 95 |
+
if isinstance(value, (int, float)):
|
| 96 |
+
cell.number_format = '$#,##0.0'
|
| 97 |
+
elif isinstance(value, str):
|
| 98 |
+
cell.value = value[:32767]
|
| 99 |
+
else:
|
| 100 |
+
cell.value = str(value)
|
| 101 |
+
except ValueError as e:
|
| 102 |
+
logging.error(f"Error assigning value '{value}' to cell {get_column_letter(j)}{i+2}: {e}")
|
| 103 |
+
cell.value = None # Assign None to the cell where the error occurred
|
| 104 |
+
|
| 105 |
+
return ws
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def download_scenarios():
|
| 113 |
+
"""
|
| 114 |
+
Makes a excel with all saved scenarios and saves it locally
|
| 115 |
+
"""
|
| 116 |
+
## create summary page
|
| 117 |
+
if len(scenarios_to_download) == 0:
|
| 118 |
+
return
|
| 119 |
+
wb = Workbook()
|
| 120 |
+
wb.iso_dates = True
|
| 121 |
+
wb.remove(wb.active)
|
| 122 |
+
st.session_state['xlsx_buffer'] = io.BytesIO()
|
| 123 |
+
summary_df = None
|
| 124 |
+
#print(scenarios_to_download)
|
| 125 |
+
for scenario_name in scenarios_to_download:
|
| 126 |
+
scenario_dict = st.session_state['saved_scenarios'][scenario_name]
|
| 127 |
+
_spends = []
|
| 128 |
+
column_names = ['Date']
|
| 129 |
+
_sales = None
|
| 130 |
+
dates = None
|
| 131 |
+
summary_rows = []
|
| 132 |
+
for channel in scenario_dict['channels']:
|
| 133 |
+
if dates is None:
|
| 134 |
+
dates = channel.get('dates')
|
| 135 |
+
_spends.append(dates)
|
| 136 |
+
if _sales is None:
|
| 137 |
+
_sales = channel.get('modified_sales')
|
| 138 |
+
else:
|
| 139 |
+
_sales += channel.get('modified_sales')
|
| 140 |
+
_spends.append(channel.get('modified_spends') * channel.get('conversion_rate'))
|
| 141 |
+
column_names.append(channel.get('name'))
|
| 142 |
+
|
| 143 |
+
name_mod = channel_name_formating(channel['name'])
|
| 144 |
+
summary_rows.append([name_mod,
|
| 145 |
+
channel.get('modified_total_spends') * channel.get('conversion_rate') ,
|
| 146 |
+
channel.get('modified_total_sales'),
|
| 147 |
+
channel.get('modified_total_sales') / channel.get('modified_total_spends') * channel.get('conversion_rate'),
|
| 148 |
+
channel.get('modified_mroi'),
|
| 149 |
+
channel.get('modified_total_sales') / channel.get('modified_total_spends') * channel.get('conversion_rate')])
|
| 150 |
+
_spends.append(_sales)
|
| 151 |
+
column_names.append('NRPU')
|
| 152 |
+
scenario_df = pd.DataFrame(_spends).T
|
| 153 |
+
scenario_df.columns = column_names
|
| 154 |
+
## write to sheet
|
| 155 |
+
ws = wb.create_sheet(scenario_name)
|
| 156 |
+
scenario_df_to_worksheet(scenario_df, ws)
|
| 157 |
+
summary_rows.append(['Total',
|
| 158 |
+
scenario_dict.get('modified_total_spends') ,
|
| 159 |
+
scenario_dict.get('modified_total_sales'),
|
| 160 |
+
scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'),
|
| 161 |
+
'-',
|
| 162 |
+
scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')])
|
| 163 |
+
columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["first", "second"])
|
| 164 |
+
columns_index = columns_index.append(pd.MultiIndex.from_product([[scenario_name],['Spends','NRPU','ROI','MROI','Spends per NRPU']], names=["first", "second"]))
|
| 165 |
+
if summary_df is None:
|
| 166 |
+
summary_df = pd.DataFrame(summary_rows, columns = columns_index)
|
| 167 |
+
summary_df = summary_df.set_index(('','Channel'))
|
| 168 |
+
else:
|
| 169 |
+
_df = pd.DataFrame(summary_rows, columns = columns_index)
|
| 170 |
+
_df = _df.set_index(('','Channel'))
|
| 171 |
+
summary_df = summary_df.merge(_df, left_index=True, right_index=True)
|
| 172 |
+
ws = wb.create_sheet('Summary',0)
|
| 173 |
+
summary_df_to_worksheet(summary_df.reset_index(), ws)
|
| 174 |
+
wb.save(st.session_state['xlsx_buffer'])
|
| 175 |
+
st.session_state['disable_download_button'] = False
|
| 176 |
+
|
| 177 |
+
def disable_download_button():
|
| 178 |
+
st.session_state['disable_download_button'] =True
|
| 179 |
+
|
| 180 |
+
def transform(x):
|
| 181 |
+
if x.name == ("",'Channel'):
|
| 182 |
+
return x
|
| 183 |
+
elif x.name[0] == 'ROI' or x.name[0] == 'MROI':
|
| 184 |
+
return x.apply(lambda y : y if isinstance(y,str) else decimal_formater(format_numbers(y,include_indicator=False,n_decimals=4),n_decimals=4))
|
| 185 |
+
else:
|
| 186 |
+
return x.apply(lambda y : y if isinstance(y,str) else format_numbers(y))
|
| 187 |
+
|
| 188 |
+
def delete_scenario():
|
| 189 |
+
if selected_scenario in st.session_state['saved_scenarios']:
|
| 190 |
+
del st.session_state['saved_scenarios'][selected_scenario]
|
| 191 |
+
with open('../saved_scenarios.pkl', 'wb') as f:
|
| 192 |
+
pickle.dump(st.session_state['saved_scenarios'],f)
|
| 193 |
+
|
| 194 |
+
def load_scenario():
|
| 195 |
+
if selected_scenario in st.session_state['saved_scenarios']:
|
| 196 |
+
st.session_state['scenario'] = class_from_dict(selected_scenario_details)
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
authenticator = st.session_state.get('authenticator')
|
| 201 |
+
if authenticator is None:
|
| 202 |
+
authenticator = load_authenticator()
|
| 203 |
+
|
| 204 |
+
name, authentication_status, username = authenticator.login('Login', 'main')
|
| 205 |
+
auth_status = st.session_state.get('authentication_status')
|
| 206 |
+
|
| 207 |
+
if auth_status == True:
|
| 208 |
+
is_state_initiaized = st.session_state.get('initialized',False)
|
| 209 |
+
if not is_state_initiaized:
|
| 210 |
+
#print("Scenario page state reloaded")
|
| 211 |
+
initialize_data()
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
saved_scenarios = st.session_state['saved_scenarios']
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
if len(saved_scenarios) ==0:
|
| 218 |
+
st.header('No saved scenarios')
|
| 219 |
+
|
| 220 |
+
else:
|
| 221 |
+
|
| 222 |
+
with st.sidebar:
|
| 223 |
+
selected_scenario = st.radio(
|
| 224 |
+
'Pick a scenario to view details',
|
| 225 |
+
list(saved_scenarios.keys())
|
| 226 |
+
)
|
| 227 |
+
st.markdown("""<hr>""", unsafe_allow_html=True)
|
| 228 |
+
scenarios_to_download = st.multiselect('Select scenarios to download',
|
| 229 |
+
list(saved_scenarios.keys()))
|
| 230 |
+
|
| 231 |
+
st.button('Prepare download',on_click=download_scenarios)
|
| 232 |
+
st.download_button(
|
| 233 |
+
label="Download Scenarios",
|
| 234 |
+
data=st.session_state['xlsx_buffer'].getvalue(),
|
| 235 |
+
file_name="scenarios.xlsx",
|
| 236 |
+
mime="application/vnd.ms-excel",
|
| 237 |
+
disabled= st.session_state['disable_download_button'],
|
| 238 |
+
on_click= disable_download_button
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
column_1, column_2,column_3 = st.columns((6,1,1))
|
| 242 |
+
with column_1:
|
| 243 |
+
st.header(selected_scenario)
|
| 244 |
+
with column_2:
|
| 245 |
+
st.button('Delete scenarios', on_click=delete_scenario)
|
| 246 |
+
with column_3:
|
| 247 |
+
st.button('Load Scenario', on_click=load_scenario)
|
| 248 |
+
|
| 249 |
+
selected_scenario_details = saved_scenarios[selected_scenario]
|
| 250 |
+
|
| 251 |
+
pd.set_option('display.max_colwidth', 100)
|
| 252 |
+
|
| 253 |
+
st.markdown(create_scenario_summary(selected_scenario_details).transform(transform).style.set_table_styles(
|
| 254 |
+
[{
|
| 255 |
+
'selector': 'th',
|
| 256 |
+
'props': [('background-color', '#11B6BD')]
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
'selector' : 'tr:nth-child(even)',
|
| 260 |
+
'props' : [('background-color', '#11B6BD')]
|
| 261 |
+
}
|
| 262 |
+
]).to_html(),unsafe_allow_html=True)
|
| 263 |
+
|
| 264 |
+
elif auth_status == False:
|
| 265 |
+
st.error('Username/Password is incorrect')
|
| 266 |
+
|
| 267 |
+
if auth_status != True:
|
| 268 |
+
try:
|
| 269 |
+
username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
|
| 270 |
+
if username_forgot_pw:
|
| 271 |
+
st.success('New password sent securely')
|
| 272 |
+
# Random password to be transferred to user securely
|
| 273 |
+
elif username_forgot_pw == False:
|
| 274 |
+
st.error('Username not found')
|
| 275 |
+
except Exception as e:
|
| 276 |
+
st.error(e)
|
pages/Data_Import.py
ADDED
|
@@ -0,0 +1,891 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Importing necessary libraries
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
st.set_page_config(
|
| 5 |
+
page_title="Model Build",
|
| 6 |
+
page_icon=":shark:",
|
| 7 |
+
layout="wide",
|
| 8 |
+
initial_sidebar_state="collapsed",
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
import pandas as pd
|
| 13 |
+
from utilities import set_header, load_local_css, load_authenticator
|
| 14 |
+
import pickle
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
load_local_css("styles.css")
|
| 18 |
+
set_header()
|
| 19 |
+
|
| 20 |
+
authenticator = st.session_state.get("authenticator")
|
| 21 |
+
if authenticator is None:
|
| 22 |
+
authenticator = load_authenticator()
|
| 23 |
+
|
| 24 |
+
name, authentication_status, username = authenticator.login("Login", "main")
|
| 25 |
+
auth_status = st.session_state.get("authentication_status")
|
| 26 |
+
|
| 27 |
+
# Check for authentication status
|
| 28 |
+
if auth_status != True:
|
| 29 |
+
st.stop()
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# Function to validate date column in dataframe
|
| 33 |
+
def validate_date_column(df):
|
| 34 |
+
try:
|
| 35 |
+
# Attempt to convert the 'Date' column to datetime
|
| 36 |
+
df["date"] = pd.to_datetime(df["date"], format="%d-%m-%Y")
|
| 37 |
+
return True
|
| 38 |
+
except:
|
| 39 |
+
return False
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# Function to determine data interval
|
| 43 |
+
def determine_data_interval(common_freq):
|
| 44 |
+
if common_freq == 1:
|
| 45 |
+
return "daily"
|
| 46 |
+
elif common_freq == 7:
|
| 47 |
+
return "weekly"
|
| 48 |
+
elif 28 <= common_freq <= 31:
|
| 49 |
+
return "monthly"
|
| 50 |
+
else:
|
| 51 |
+
return "irregular"
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# Function to read each uploaded Excel file into a pandas DataFrame and stores them in a dictionary
|
| 55 |
+
st.cache_resource(show_spinner=False)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def files_to_dataframes(uploaded_files):
|
| 59 |
+
df_dict = {}
|
| 60 |
+
for uploaded_file in uploaded_files:
|
| 61 |
+
# Extract file name without extension
|
| 62 |
+
file_name = uploaded_file.name.rsplit(".", 1)[0]
|
| 63 |
+
|
| 64 |
+
# Check for duplicate file names
|
| 65 |
+
if file_name in df_dict:
|
| 66 |
+
st.warning(
|
| 67 |
+
f"Duplicate File: {file_name}. This file will be skipped.",
|
| 68 |
+
icon="⚠️",
|
| 69 |
+
)
|
| 70 |
+
continue
|
| 71 |
+
|
| 72 |
+
# Read the file into a DataFrame
|
| 73 |
+
df = pd.read_excel(uploaded_file)
|
| 74 |
+
|
| 75 |
+
# Convert all column names to lowercase
|
| 76 |
+
df.columns = df.columns.str.lower().str.strip()
|
| 77 |
+
|
| 78 |
+
# Separate numeric and non-numeric columns
|
| 79 |
+
numeric_cols = list(df.select_dtypes(include=["number"]).columns)
|
| 80 |
+
non_numeric_cols = [
|
| 81 |
+
col
|
| 82 |
+
for col in df.select_dtypes(exclude=["number"]).columns
|
| 83 |
+
if col.lower() != "date"
|
| 84 |
+
]
|
| 85 |
+
|
| 86 |
+
# Check for 'Date' column
|
| 87 |
+
if not (validate_date_column(df) and len(numeric_cols) > 0):
|
| 88 |
+
st.warning(
|
| 89 |
+
f"File Name: {file_name} ➜ Please upload data with Date column in 'DD-MM-YYYY' format and at least one media/exogenous column. This file will be skipped.",
|
| 90 |
+
icon="⚠️",
|
| 91 |
+
)
|
| 92 |
+
continue
|
| 93 |
+
|
| 94 |
+
# Check for interval
|
| 95 |
+
common_freq = common_freq = (
|
| 96 |
+
pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0]
|
| 97 |
+
)
|
| 98 |
+
# Calculate the data interval (daily, weekly, monthly or irregular)
|
| 99 |
+
interval = determine_data_interval(common_freq)
|
| 100 |
+
if interval == "irregular":
|
| 101 |
+
st.warning(
|
| 102 |
+
f"File Name: {file_name} ➜ Please upload data in daily, weekly or monthly interval. This file will be skipped.",
|
| 103 |
+
icon="⚠️",
|
| 104 |
+
)
|
| 105 |
+
continue
|
| 106 |
+
|
| 107 |
+
# Store both DataFrames in the dictionary under their respective keys
|
| 108 |
+
df_dict[file_name] = {
|
| 109 |
+
"numeric": numeric_cols,
|
| 110 |
+
"non_numeric": non_numeric_cols,
|
| 111 |
+
"interval": interval,
|
| 112 |
+
"df": df,
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
return df_dict
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# Function to adjust dataframe granularity
|
| 119 |
+
# def adjust_dataframe_granularity(df, current_granularity, target_granularity):
|
| 120 |
+
# # Set index
|
| 121 |
+
# df.set_index("date", inplace=True)
|
| 122 |
+
|
| 123 |
+
# # Define aggregation rules for resampling
|
| 124 |
+
# aggregation_rules = {
|
| 125 |
+
# col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
|
| 126 |
+
# for col in df.columns
|
| 127 |
+
# }
|
| 128 |
+
|
| 129 |
+
# resampled_df = df
|
| 130 |
+
# if current_granularity == "daily" and target_granularity == "weekly":
|
| 131 |
+
# resampled_df = df.resample("W-MON").agg(aggregation_rules)
|
| 132 |
+
|
| 133 |
+
# elif current_granularity == "daily" and target_granularity == "monthly":
|
| 134 |
+
# resampled_df = df.resample("MS").agg(aggregation_rules)
|
| 135 |
+
|
| 136 |
+
# elif current_granularity == "daily" and target_granularity == "daily":
|
| 137 |
+
# resampled_df = df.resample("D").agg(aggregation_rules)
|
| 138 |
+
|
| 139 |
+
# elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
|
| 140 |
+
# # For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
|
| 141 |
+
# expanded_data = []
|
| 142 |
+
# for _, row in df.iterrows():
|
| 143 |
+
# if current_granularity == "weekly":
|
| 144 |
+
# period_range = pd.date_range(start=row.name, periods=7)
|
| 145 |
+
# elif current_granularity == "monthly":
|
| 146 |
+
# period_range = pd.date_range(
|
| 147 |
+
# start=row.name, periods=row.name.days_in_month
|
| 148 |
+
# )
|
| 149 |
+
|
| 150 |
+
# for date in period_range:
|
| 151 |
+
# new_row = {}
|
| 152 |
+
# for col in df.columns:
|
| 153 |
+
# if pd.api.types.is_numeric_dtype(df[col]):
|
| 154 |
+
# if current_granularity == "weekly":
|
| 155 |
+
# new_row[col] = row[col] / 7
|
| 156 |
+
# elif current_granularity == "monthly":
|
| 157 |
+
# new_row[col] = row[col] / row.name.days_in_month
|
| 158 |
+
# else:
|
| 159 |
+
# new_row[col] = row[col]
|
| 160 |
+
# expanded_data.append((date, new_row))
|
| 161 |
+
|
| 162 |
+
# resampled_df = pd.DataFrame(
|
| 163 |
+
# [data for _, data in expanded_data],
|
| 164 |
+
# index=[date for date, _ in expanded_data],
|
| 165 |
+
# )
|
| 166 |
+
|
| 167 |
+
# # Reset index
|
| 168 |
+
# resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
|
| 169 |
+
|
| 170 |
+
# return resampled_df
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def adjust_dataframe_granularity(df, current_granularity, target_granularity):
|
| 174 |
+
# Set index
|
| 175 |
+
df.set_index("date", inplace=True)
|
| 176 |
+
|
| 177 |
+
# Define aggregation rules for resampling
|
| 178 |
+
aggregation_rules = {
|
| 179 |
+
col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
|
| 180 |
+
for col in df.columns
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
# Initialize resampled_df
|
| 184 |
+
resampled_df = df
|
| 185 |
+
if current_granularity == "daily" and target_granularity == "weekly":
|
| 186 |
+
resampled_df = df.resample("W-MON", closed="left", label="left").agg(
|
| 187 |
+
aggregation_rules
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
elif current_granularity == "daily" and target_granularity == "monthly":
|
| 191 |
+
resampled_df = df.resample("MS", closed="left", label="left").agg(
|
| 192 |
+
aggregation_rules
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
elif current_granularity == "daily" and target_granularity == "daily":
|
| 196 |
+
resampled_df = df.resample("D").agg(aggregation_rules)
|
| 197 |
+
|
| 198 |
+
elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
|
| 199 |
+
# For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
|
| 200 |
+
expanded_data = []
|
| 201 |
+
for _, row in df.iterrows():
|
| 202 |
+
if current_granularity == "weekly":
|
| 203 |
+
period_range = pd.date_range(start=row.name, periods=7)
|
| 204 |
+
elif current_granularity == "monthly":
|
| 205 |
+
period_range = pd.date_range(
|
| 206 |
+
start=row.name, periods=row.name.days_in_month
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
for date in period_range:
|
| 210 |
+
new_row = {}
|
| 211 |
+
for col in df.columns:
|
| 212 |
+
if pd.api.types.is_numeric_dtype(df[col]):
|
| 213 |
+
if current_granularity == "weekly":
|
| 214 |
+
new_row[col] = row[col] / 7
|
| 215 |
+
elif current_granularity == "monthly":
|
| 216 |
+
new_row[col] = row[col] / row.name.days_in_month
|
| 217 |
+
else:
|
| 218 |
+
new_row[col] = row[col]
|
| 219 |
+
expanded_data.append((date, new_row))
|
| 220 |
+
|
| 221 |
+
resampled_df = pd.DataFrame(
|
| 222 |
+
[data for _, data in expanded_data],
|
| 223 |
+
index=[date for date, _ in expanded_data],
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
# Reset index
|
| 227 |
+
resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
|
| 228 |
+
|
| 229 |
+
return resampled_df
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
# Function to clean and extract unique values of DMA and Panel
|
| 233 |
+
st.cache_resource(show_spinner=False)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def clean_and_extract_unique_values(files_dict, selections):
|
| 237 |
+
all_dma_values = set()
|
| 238 |
+
all_panel_values = set()
|
| 239 |
+
|
| 240 |
+
for file_name, file_data in files_dict.items():
|
| 241 |
+
df = file_data["df"]
|
| 242 |
+
|
| 243 |
+
# 'DMA' and 'Panel' selections
|
| 244 |
+
selected_dma = selections[file_name].get("DMA")
|
| 245 |
+
selected_panel = selections[file_name].get("Panel")
|
| 246 |
+
|
| 247 |
+
# Clean and standardize DMA column if it exists and is selected
|
| 248 |
+
if selected_dma and selected_dma != "N/A" and selected_dma in df.columns:
|
| 249 |
+
df[selected_dma] = (
|
| 250 |
+
df[selected_dma].str.lower().str.strip().str.replace("_", " ")
|
| 251 |
+
)
|
| 252 |
+
all_dma_values.update(df[selected_dma].dropna().unique())
|
| 253 |
+
|
| 254 |
+
# Clean and standardize Panel column if it exists and is selected
|
| 255 |
+
if selected_panel and selected_panel != "N/A" and selected_panel in df.columns:
|
| 256 |
+
df[selected_panel] = (
|
| 257 |
+
df[selected_panel].str.lower().str.strip().str.replace("_", " ")
|
| 258 |
+
)
|
| 259 |
+
all_panel_values.update(df[selected_panel].dropna().unique())
|
| 260 |
+
|
| 261 |
+
# Update the processed DataFrame back in the dictionary
|
| 262 |
+
files_dict[file_name]["df"] = df
|
| 263 |
+
|
| 264 |
+
return all_dma_values, all_panel_values
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
# Function to format values for display
|
| 268 |
+
st.cache_resource(show_spinner=False)
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
def format_values_for_display(values_list):
|
| 272 |
+
# Capitalize the first letter of each word and replace underscores with spaces
|
| 273 |
+
formatted_list = [value.replace("_", " ").title() for value in values_list]
|
| 274 |
+
# Join values with commas and 'and' before the last value
|
| 275 |
+
if len(formatted_list) > 1:
|
| 276 |
+
return ", ".join(formatted_list[:-1]) + ", and " + formatted_list[-1]
|
| 277 |
+
elif formatted_list:
|
| 278 |
+
return formatted_list[0]
|
| 279 |
+
return "No values available"
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
# Function to normalizes all data within files_dict to a daily granularity
|
| 283 |
+
st.cache(show_spinner=False, allow_output_mutation=True)
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
def standardize_data_to_daily(files_dict, selections):
|
| 287 |
+
# Normalize all data to a daily granularity using a provided function
|
| 288 |
+
files_dict = apply_granularity_to_all(files_dict, "daily", selections)
|
| 289 |
+
|
| 290 |
+
# Update the "interval" attribute for each dataset to indicate the new granularity
|
| 291 |
+
for files_name, files_data in files_dict.items():
|
| 292 |
+
files_data["interval"] = "daily"
|
| 293 |
+
|
| 294 |
+
return files_dict
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
# Function to apply granularity transformation to all DataFrames in files_dict
|
| 298 |
+
st.cache_resource(show_spinner=False)
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def apply_granularity_to_all(files_dict, granularity_selection, selections):
|
| 302 |
+
for file_name, file_data in files_dict.items():
|
| 303 |
+
df = file_data["df"].copy()
|
| 304 |
+
|
| 305 |
+
# Handling when DMA or Panel might be 'N/A'
|
| 306 |
+
selected_dma = selections[file_name].get("DMA")
|
| 307 |
+
selected_panel = selections[file_name].get("Panel")
|
| 308 |
+
|
| 309 |
+
# Correcting the segment selection logic & handling 'N/A'
|
| 310 |
+
if selected_dma != "N/A" and selected_panel != "N/A":
|
| 311 |
+
unique_combinations = df[[selected_dma, selected_panel]].drop_duplicates()
|
| 312 |
+
elif selected_dma != "N/A":
|
| 313 |
+
unique_combinations = df[[selected_dma]].drop_duplicates()
|
| 314 |
+
selected_panel = None # Ensure Panel is ignored if N/A
|
| 315 |
+
elif selected_panel != "N/A":
|
| 316 |
+
unique_combinations = df[[selected_panel]].drop_duplicates()
|
| 317 |
+
selected_dma = None # Ensure DMA is ignored if N/A
|
| 318 |
+
else:
|
| 319 |
+
# If both are 'N/A', process the entire dataframe as is
|
| 320 |
+
df = adjust_dataframe_granularity(
|
| 321 |
+
df, file_data["interval"], granularity_selection
|
| 322 |
+
)
|
| 323 |
+
files_dict[file_name]["df"] = df
|
| 324 |
+
continue # Skip to the next file
|
| 325 |
+
|
| 326 |
+
transformed_segments = []
|
| 327 |
+
for _, combo in unique_combinations.iterrows():
|
| 328 |
+
if selected_dma and selected_panel:
|
| 329 |
+
segment = df[
|
| 330 |
+
(df[selected_dma] == combo[selected_dma])
|
| 331 |
+
& (df[selected_panel] == combo[selected_panel])
|
| 332 |
+
]
|
| 333 |
+
elif selected_dma:
|
| 334 |
+
segment = df[df[selected_dma] == combo[selected_dma]]
|
| 335 |
+
elif selected_panel:
|
| 336 |
+
segment = df[df[selected_panel] == combo[selected_panel]]
|
| 337 |
+
|
| 338 |
+
# Adjust granularity of the segment
|
| 339 |
+
transformed_segment = adjust_dataframe_granularity(
|
| 340 |
+
segment, file_data["interval"], granularity_selection
|
| 341 |
+
)
|
| 342 |
+
transformed_segments.append(transformed_segment)
|
| 343 |
+
|
| 344 |
+
# Combine all transformed segments into a single DataFrame for this file
|
| 345 |
+
transformed_df = pd.concat(transformed_segments, ignore_index=True)
|
| 346 |
+
files_dict[file_name]["df"] = transformed_df
|
| 347 |
+
|
| 348 |
+
return files_dict
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
# Function to create main dataframe structure
|
| 352 |
+
st.cache_resource(show_spinner=False)
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def create_main_dataframe(
|
| 356 |
+
files_dict, all_dma_values, all_panel_values, granularity_selection
|
| 357 |
+
):
|
| 358 |
+
# Determine the global start and end dates across all DataFrames
|
| 359 |
+
global_start = min(df["df"]["date"].min() for df in files_dict.values())
|
| 360 |
+
global_end = max(df["df"]["date"].max() for df in files_dict.values())
|
| 361 |
+
|
| 362 |
+
# Adjust the date_range generation based on the granularity_selection
|
| 363 |
+
if granularity_selection == "weekly":
|
| 364 |
+
# Generate a weekly range, with weeks starting on Monday
|
| 365 |
+
date_range = pd.date_range(start=global_start, end=global_end, freq="W-MON")
|
| 366 |
+
elif granularity_selection == "monthly":
|
| 367 |
+
# Generate a monthly range, starting from the first day of each month
|
| 368 |
+
date_range = pd.date_range(start=global_start, end=global_end, freq="MS")
|
| 369 |
+
else: # Default to daily if not weekly or monthly
|
| 370 |
+
date_range = pd.date_range(start=global_start, end=global_end, freq="D")
|
| 371 |
+
|
| 372 |
+
# Collect all unique DMA and Panel values, excluding 'N/A'
|
| 373 |
+
all_dmas = all_dma_values
|
| 374 |
+
all_panels = all_panel_values
|
| 375 |
+
|
| 376 |
+
# Dynamically build the list of dimensions (Panel, DMA) to include in the main DataFrame based on availability
|
| 377 |
+
dimensions, merge_keys = [], []
|
| 378 |
+
if all_panels:
|
| 379 |
+
dimensions.append(all_panels)
|
| 380 |
+
merge_keys.append("Panel")
|
| 381 |
+
if all_dmas:
|
| 382 |
+
dimensions.append(all_dmas)
|
| 383 |
+
merge_keys.append("DMA")
|
| 384 |
+
|
| 385 |
+
dimensions.append(date_range) # Date range is always included
|
| 386 |
+
merge_keys.append("date") # Date range is always included
|
| 387 |
+
|
| 388 |
+
# Create a main DataFrame template with the dimensions
|
| 389 |
+
main_df = pd.MultiIndex.from_product(
|
| 390 |
+
dimensions,
|
| 391 |
+
names=[name for name, _ in zip(merge_keys, dimensions)],
|
| 392 |
+
).to_frame(index=False)
|
| 393 |
+
|
| 394 |
+
return main_df.reset_index(drop=True)
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
# Function to prepare and merge dataFrames
|
| 398 |
+
st.cache_resource(show_spinner=False)
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def merge_into_main_df(main_df, files_dict, selections):
|
| 402 |
+
for file_name, file_data in files_dict.items():
|
| 403 |
+
df = file_data["df"].copy()
|
| 404 |
+
|
| 405 |
+
# Rename selected DMA and Panel columns if not 'N/A'
|
| 406 |
+
selected_dma = selections[file_name].get("DMA", "N/A")
|
| 407 |
+
selected_panel = selections[file_name].get("Panel", "N/A")
|
| 408 |
+
if selected_dma != "N/A":
|
| 409 |
+
df.rename(columns={selected_dma: "DMA"}, inplace=True)
|
| 410 |
+
if selected_panel != "N/A":
|
| 411 |
+
df.rename(columns={selected_panel: "Panel"}, inplace=True)
|
| 412 |
+
|
| 413 |
+
# Merge current DataFrame into main_df based on 'date', and where applicable, 'Panel' and 'DMA'
|
| 414 |
+
merge_keys = ["date"]
|
| 415 |
+
if "Panel" in df.columns:
|
| 416 |
+
merge_keys.append("Panel")
|
| 417 |
+
if "DMA" in df.columns:
|
| 418 |
+
merge_keys.append("DMA")
|
| 419 |
+
main_df = pd.merge(main_df, df, on=merge_keys, how="left")
|
| 420 |
+
|
| 421 |
+
# After all merges, sort by 'date' and reset index for cleanliness
|
| 422 |
+
sort_by = ["date"]
|
| 423 |
+
if "Panel" in main_df.columns:
|
| 424 |
+
sort_by.append("Panel")
|
| 425 |
+
if "DMA" in main_df.columns:
|
| 426 |
+
sort_by.append("DMA")
|
| 427 |
+
main_df.sort_values(by=sort_by, inplace=True)
|
| 428 |
+
main_df.reset_index(drop=True, inplace=True)
|
| 429 |
+
|
| 430 |
+
return main_df
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
# Function to categorize column
|
| 434 |
+
def categorize_column(column_name):
|
| 435 |
+
# Define keywords for each category
|
| 436 |
+
internal_keywords = [
|
| 437 |
+
"Price",
|
| 438 |
+
"Discount",
|
| 439 |
+
"product_price",
|
| 440 |
+
"cost",
|
| 441 |
+
"margin",
|
| 442 |
+
"inventory",
|
| 443 |
+
"sales",
|
| 444 |
+
"revenue",
|
| 445 |
+
"turnover",
|
| 446 |
+
"expense",
|
| 447 |
+
]
|
| 448 |
+
exogenous_keywords = [
|
| 449 |
+
"GDP",
|
| 450 |
+
"Tax",
|
| 451 |
+
"Inflation",
|
| 452 |
+
"interest_rate",
|
| 453 |
+
"employment_rate",
|
| 454 |
+
"exchange_rate",
|
| 455 |
+
"consumer_spending",
|
| 456 |
+
"retail_sales",
|
| 457 |
+
"oil_prices",
|
| 458 |
+
"weather",
|
| 459 |
+
]
|
| 460 |
+
|
| 461 |
+
# Check if the column name matches any of the keywords for Internal or Exogenous categories
|
| 462 |
+
for keyword in internal_keywords:
|
| 463 |
+
if keyword.lower() in column_name.lower():
|
| 464 |
+
return "Internal"
|
| 465 |
+
for keyword in exogenous_keywords:
|
| 466 |
+
if keyword.lower() in column_name.lower():
|
| 467 |
+
return "Exogenous"
|
| 468 |
+
|
| 469 |
+
# Default to Media if no match found
|
| 470 |
+
return "Media"
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
# Function to calculate missing stats and prepare for editable DataFrame
|
| 474 |
+
st.cache_resource(show_spinner=False)
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
def prepare_missing_stats_df(df):
|
| 478 |
+
missing_stats = []
|
| 479 |
+
for column in df.columns:
|
| 480 |
+
if (
|
| 481 |
+
column == "date" or column == "DMA" or column == "Panel"
|
| 482 |
+
): # Skip Date, DMA and Panel column
|
| 483 |
+
continue
|
| 484 |
+
|
| 485 |
+
missing = df[column].isnull().sum()
|
| 486 |
+
pct_missing = round((missing / len(df)) * 100, 2)
|
| 487 |
+
|
| 488 |
+
# Dynamically assign category based on column name
|
| 489 |
+
# category = categorize_column(column)
|
| 490 |
+
category = "Media"
|
| 491 |
+
|
| 492 |
+
missing_stats.append(
|
| 493 |
+
{
|
| 494 |
+
"Column": column,
|
| 495 |
+
"Missing Values": missing,
|
| 496 |
+
"Missing Percentage": pct_missing,
|
| 497 |
+
"Impute Method": "Fill with 0", # Default value
|
| 498 |
+
"Category": category,
|
| 499 |
+
}
|
| 500 |
+
)
|
| 501 |
+
stats_df = pd.DataFrame(missing_stats)
|
| 502 |
+
|
| 503 |
+
return stats_df
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
# Function to add API DataFrame details to the files dictionary
|
| 507 |
+
st.cache_resource(show_spinner=False)
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
def add_api_dataframe_to_dict(main_df, files_dict):
|
| 511 |
+
files_dict["API"] = {
|
| 512 |
+
"numeric": list(main_df.select_dtypes(include=["number"]).columns),
|
| 513 |
+
"non_numeric": [
|
| 514 |
+
col
|
| 515 |
+
for col in main_df.select_dtypes(exclude=["number"]).columns
|
| 516 |
+
if col.lower() != "date"
|
| 517 |
+
],
|
| 518 |
+
"interval": determine_data_interval(
|
| 519 |
+
pd.Series(main_df["date"].unique()).diff().dt.days.dropna().mode()[0]
|
| 520 |
+
),
|
| 521 |
+
"df": main_df,
|
| 522 |
+
}
|
| 523 |
+
|
| 524 |
+
return files_dict
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
# Function to reads an API into a DataFrame, parsing specified columns as datetime
|
| 528 |
+
@st.cache_resource(show_spinner=False)
|
| 529 |
+
def read_API_data():
|
| 530 |
+
return pd.read_excel(r"upf_data_converted.xlsx", parse_dates=["Date"])
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
# Function to set the 'DMA_Panel_Selected' session state variable to False
|
| 534 |
+
def set_DMA_Panel_Selected_false():
|
| 535 |
+
st.session_state["DMA_Panel_Selected"] = False
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
# Initialize 'final_df' in session state
|
| 539 |
+
if "final_df" not in st.session_state:
|
| 540 |
+
st.session_state["final_df"] = pd.DataFrame()
|
| 541 |
+
|
| 542 |
+
# Initialize 'bin_dict' in session state
|
| 543 |
+
if "bin_dict" not in st.session_state:
|
| 544 |
+
st.session_state["bin_dict"] = {}
|
| 545 |
+
|
| 546 |
+
# Initialize 'DMA_Panel_Selected' in session state
|
| 547 |
+
if "DMA_Panel_Selected" not in st.session_state:
|
| 548 |
+
st.session_state["DMA_Panel_Selected"] = False
|
| 549 |
+
|
| 550 |
+
# Page Title
|
| 551 |
+
st.write("") # Top padding
|
| 552 |
+
st.title("Data Import")
|
| 553 |
+
|
| 554 |
+
|
| 555 |
+
#########################################################################################################################################################
|
| 556 |
+
# Create a dictionary to hold all DataFrames and collect user input to specify "DMA" and "Panel" columns for each file
|
| 557 |
+
#########################################################################################################################################################
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
# Read the Excel file, parsing 'Date' column as datetime
|
| 561 |
+
main_df = read_API_data()
|
| 562 |
+
|
| 563 |
+
# Convert all column names to lowercase
|
| 564 |
+
main_df.columns = main_df.columns.str.lower().str.strip()
|
| 565 |
+
|
| 566 |
+
# File uploader
|
| 567 |
+
uploaded_files = st.file_uploader(
|
| 568 |
+
"Upload additional data",
|
| 569 |
+
type=["xlsx"],
|
| 570 |
+
accept_multiple_files=True,
|
| 571 |
+
on_change=set_DMA_Panel_Selected_false,
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
# Custom HTML for upload instructions
|
| 575 |
+
recommendation_html = f"""
|
| 576 |
+
<div style="text-align: justify;">
|
| 577 |
+
<strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including DMA, Panel, media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values.
|
| 578 |
+
</div>
|
| 579 |
+
"""
|
| 580 |
+
st.markdown(recommendation_html, unsafe_allow_html=True)
|
| 581 |
+
|
| 582 |
+
# Choose Date Granularity
|
| 583 |
+
st.markdown("#### Choose Date Granularity")
|
| 584 |
+
# Granularity Selection
|
| 585 |
+
granularity_selection = st.selectbox(
|
| 586 |
+
"Choose Date Granularity",
|
| 587 |
+
["Daily", "Weekly", "Monthly"],
|
| 588 |
+
label_visibility="collapsed",
|
| 589 |
+
on_change=set_DMA_Panel_Selected_false,
|
| 590 |
+
)
|
| 591 |
+
granularity_selection = str(granularity_selection).lower()
|
| 592 |
+
|
| 593 |
+
# Convert files to dataframes
|
| 594 |
+
files_dict = files_to_dataframes(uploaded_files)
|
| 595 |
+
|
| 596 |
+
# Add API Dataframe
|
| 597 |
+
if main_df is not None:
|
| 598 |
+
files_dict = add_api_dataframe_to_dict(main_df, files_dict)
|
| 599 |
+
|
| 600 |
+
# Display a warning message if no files have been uploaded and halt further execution
|
| 601 |
+
if not files_dict:
|
| 602 |
+
st.warning(
|
| 603 |
+
"Please upload at least one file to proceed.",
|
| 604 |
+
icon="⚠️",
|
| 605 |
+
)
|
| 606 |
+
st.stop() # Halts further execution until file is uploaded
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
# Select DMA and Panel columns
|
| 610 |
+
st.markdown("#### Select DMA and Panel columns")
|
| 611 |
+
selections = {}
|
| 612 |
+
with st.expander("Select DMA and Panel columns", expanded=False):
|
| 613 |
+
count = 0 # Initialize counter to manage the visibility of labels and keys
|
| 614 |
+
for file_name, file_data in files_dict.items():
|
| 615 |
+
# Determine visibility of the label based on the count
|
| 616 |
+
if count == 0:
|
| 617 |
+
label_visibility = "visible"
|
| 618 |
+
else:
|
| 619 |
+
label_visibility = "collapsed"
|
| 620 |
+
|
| 621 |
+
# Extract non-numeric columns
|
| 622 |
+
non_numeric_cols = file_data["non_numeric"]
|
| 623 |
+
|
| 624 |
+
# Prepare DMA and Panel values for dropdown, adding "N/A" as an option
|
| 625 |
+
dma_values = non_numeric_cols + ["N/A"]
|
| 626 |
+
panel_values = non_numeric_cols + ["N/A"]
|
| 627 |
+
|
| 628 |
+
# Skip if only one option is available
|
| 629 |
+
if len(dma_values) == 1 and len(panel_values) == 1:
|
| 630 |
+
selected_dma, selected_panel = "N/A", "N/A"
|
| 631 |
+
# Update the selections for DMA and Panel for the current file
|
| 632 |
+
selections[file_name] = {
|
| 633 |
+
"DMA": selected_dma,
|
| 634 |
+
"Panel": selected_panel,
|
| 635 |
+
}
|
| 636 |
+
continue
|
| 637 |
+
|
| 638 |
+
# Create layout columns for File Name, DMA, and Panel selections
|
| 639 |
+
file_name_col, DMA_col, Panel_col = st.columns([2, 4, 4])
|
| 640 |
+
|
| 641 |
+
with file_name_col:
|
| 642 |
+
# Display "File Name" label only for the first file
|
| 643 |
+
if count == 0:
|
| 644 |
+
st.write("File Name")
|
| 645 |
+
else:
|
| 646 |
+
st.write("")
|
| 647 |
+
st.write(file_name) # Display the file name
|
| 648 |
+
|
| 649 |
+
with DMA_col:
|
| 650 |
+
# Display a selectbox for DMA values
|
| 651 |
+
selected_dma = st.selectbox(
|
| 652 |
+
"Select DMA",
|
| 653 |
+
dma_values,
|
| 654 |
+
on_change=set_DMA_Panel_Selected_false,
|
| 655 |
+
label_visibility=label_visibility, # Control visibility of the label
|
| 656 |
+
key=f"DMA_selectbox{count}", # Ensure unique key for each selectbox
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
with Panel_col:
|
| 660 |
+
# Display a selectbox for Panel values
|
| 661 |
+
selected_panel = st.selectbox(
|
| 662 |
+
"Select Panel",
|
| 663 |
+
panel_values,
|
| 664 |
+
on_change=set_DMA_Panel_Selected_false,
|
| 665 |
+
label_visibility=label_visibility, # Control visibility of the label
|
| 666 |
+
key=f"Panel_selectbox{count}", # Ensure unique key for each selectbox
|
| 667 |
+
)
|
| 668 |
+
|
| 669 |
+
# Skip processing if the same column is selected for both Panel and DMA due to potential data integrity issues
|
| 670 |
+
if selected_panel == selected_dma and not (
|
| 671 |
+
selected_panel == "N/A" and selected_dma == "N/A"
|
| 672 |
+
):
|
| 673 |
+
st.warning(
|
| 674 |
+
f"File: {file_name} → The same column cannot serve as both Panel and DMA. Please adjust your selections.",
|
| 675 |
+
)
|
| 676 |
+
selected_dma, selected_panel = "N/A", "N/A"
|
| 677 |
+
st.stop()
|
| 678 |
+
|
| 679 |
+
# Update the selections for DMA and Panel for the current file
|
| 680 |
+
selections[file_name] = {
|
| 681 |
+
"DMA": selected_dma,
|
| 682 |
+
"Panel": selected_panel,
|
| 683 |
+
}
|
| 684 |
+
|
| 685 |
+
count += 1 # Increment the counter after processing each file
|
| 686 |
+
|
| 687 |
+
# Accept DMA and Panel selection
|
| 688 |
+
if st.button("Accept and Process", use_container_width=True):
|
| 689 |
+
|
| 690 |
+
# Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity
|
| 691 |
+
with st.spinner("Processing...", cache=True):
|
| 692 |
+
files_dict = standardize_data_to_daily(files_dict, selections)
|
| 693 |
+
|
| 694 |
+
# Convert all data to daily level granularity
|
| 695 |
+
files_dict = apply_granularity_to_all(
|
| 696 |
+
files_dict, granularity_selection, selections
|
| 697 |
+
)
|
| 698 |
+
|
| 699 |
+
st.session_state["files_dict"] = files_dict
|
| 700 |
+
st.session_state["DMA_Panel_Selected"] = True
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
#########################################################################################################################################################
|
| 704 |
+
# Display unique DMA and Panel values
|
| 705 |
+
#########################################################################################################################################################
|
| 706 |
+
|
| 707 |
+
|
| 708 |
+
# Halts further execution until DMA and Panel columns are selected
|
| 709 |
+
if "files_dict" in st.session_state and st.session_state["DMA_Panel_Selected"]:
|
| 710 |
+
files_dict = st.session_state["files_dict"]
|
| 711 |
+
else:
|
| 712 |
+
st.stop()
|
| 713 |
+
|
| 714 |
+
# Set to store unique values of DMA and Panel
|
| 715 |
+
with st.spinner("Fetching DMA and Panel values..."):
|
| 716 |
+
all_dma_values, all_panel_values = clean_and_extract_unique_values(
|
| 717 |
+
files_dict, selections
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
# List of DMA and Panel columns unique values
|
| 721 |
+
list_of_all_dma_values = list(all_dma_values)
|
| 722 |
+
list_of_all_panel_values = list(all_panel_values)
|
| 723 |
+
|
| 724 |
+
# Format DMA and Panel values for display
|
| 725 |
+
formatted_dma_values = format_values_for_display(list_of_all_dma_values)
|
| 726 |
+
formatted_panel_values = format_values_for_display(list_of_all_panel_values)
|
| 727 |
+
|
| 728 |
+
# Unique DMA and Panel values
|
| 729 |
+
st.markdown("#### Unique DMA and Panel values")
|
| 730 |
+
# Display DMA and Panel values
|
| 731 |
+
with st.expander("Unique DMA and Panel values"):
|
| 732 |
+
st.write("")
|
| 733 |
+
st.markdown(
|
| 734 |
+
f"""
|
| 735 |
+
<style>
|
| 736 |
+
.justify-text {{
|
| 737 |
+
text-align: justify;
|
| 738 |
+
}}
|
| 739 |
+
</style>
|
| 740 |
+
<div class="justify-text">
|
| 741 |
+
<strong>Panel Values:</strong> {formatted_panel_values}<br>
|
| 742 |
+
<strong>DMA Values:</strong> {formatted_dma_values}
|
| 743 |
+
</div>
|
| 744 |
+
""",
|
| 745 |
+
unsafe_allow_html=True,
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
# Display total DMA and Panel
|
| 749 |
+
st.write("")
|
| 750 |
+
st.markdown(
|
| 751 |
+
f"""
|
| 752 |
+
<div style="text-align: justify;">
|
| 753 |
+
<strong>Number of DMAs detected:</strong> {len(list_of_all_dma_values)}<br>
|
| 754 |
+
<strong>Number of Panels detected:</strong> {len(list_of_all_panel_values)}
|
| 755 |
+
</div>
|
| 756 |
+
""",
|
| 757 |
+
unsafe_allow_html=True,
|
| 758 |
+
)
|
| 759 |
+
st.write("")
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
#########################################################################################################################################################
|
| 763 |
+
# Merge all DataFrames
|
| 764 |
+
#########################################################################################################################################################
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
# Merge all DataFrames selected
|
| 768 |
+
main_df = create_main_dataframe(
|
| 769 |
+
files_dict, all_dma_values, all_panel_values, granularity_selection
|
| 770 |
+
)
|
| 771 |
+
merged_df = merge_into_main_df(main_df, files_dict, selections)
|
| 772 |
+
|
| 773 |
+
# # Display the merged DataFrame
|
| 774 |
+
# st.markdown("#### Merged DataFrame based on selected DMA and Panel")
|
| 775 |
+
# st.dataframe(merged_df)
|
| 776 |
+
|
| 777 |
+
|
| 778 |
+
#########################################################################################################################################################
|
| 779 |
+
# Categorize Variables and Impute Missing Values
|
| 780 |
+
#########################################################################################################################################################
|
| 781 |
+
|
| 782 |
+
|
| 783 |
+
# Create an editable DataFrame in Streamlit
|
| 784 |
+
st.markdown("#### Select Variables Category & Impute Missing Values")
|
| 785 |
+
|
| 786 |
+
# Prepare missing stats DataFrame for editing
|
| 787 |
+
missing_stats_df = prepare_missing_stats_df(merged_df)
|
| 788 |
+
|
| 789 |
+
edited_stats_df = st.data_editor(
|
| 790 |
+
missing_stats_df,
|
| 791 |
+
column_config={
|
| 792 |
+
"Impute Method": st.column_config.SelectboxColumn(
|
| 793 |
+
options=[
|
| 794 |
+
"Drop Column",
|
| 795 |
+
"Fill with Mean",
|
| 796 |
+
"Fill with Median",
|
| 797 |
+
"Fill with 0",
|
| 798 |
+
],
|
| 799 |
+
required=True,
|
| 800 |
+
default="Fill with 0",
|
| 801 |
+
),
|
| 802 |
+
"Category": st.column_config.SelectboxColumn(
|
| 803 |
+
options=[
|
| 804 |
+
"Media",
|
| 805 |
+
"Exogenous",
|
| 806 |
+
"Internal",
|
| 807 |
+
"Response_Metric"
|
| 808 |
+
],
|
| 809 |
+
required=True,
|
| 810 |
+
default="Media",
|
| 811 |
+
),
|
| 812 |
+
},
|
| 813 |
+
disabled=["Column", "Missing Values", "Missing Percentage"],
|
| 814 |
+
hide_index=True,
|
| 815 |
+
use_container_width=True,
|
| 816 |
+
)
|
| 817 |
+
|
| 818 |
+
# Apply changes based on edited DataFrame
|
| 819 |
+
for i, row in edited_stats_df.iterrows():
|
| 820 |
+
column = row["Column"]
|
| 821 |
+
if row["Impute Method"] == "Drop Column":
|
| 822 |
+
merged_df.drop(columns=[column], inplace=True)
|
| 823 |
+
|
| 824 |
+
elif row["Impute Method"] == "Fill with Mean":
|
| 825 |
+
merged_df[column].fillna(merged_df[column].mean(), inplace=True)
|
| 826 |
+
|
| 827 |
+
elif row["Impute Method"] == "Fill with Median":
|
| 828 |
+
merged_df[column].fillna(merged_df[column].median(), inplace=True)
|
| 829 |
+
|
| 830 |
+
elif row["Impute Method"] == "Fill with 0":
|
| 831 |
+
merged_df[column].fillna(0, inplace=True)
|
| 832 |
+
|
| 833 |
+
# Display the Final DataFrame and exogenous variables
|
| 834 |
+
st.markdown("#### Final DataFrame")
|
| 835 |
+
final_df = merged_df
|
| 836 |
+
st.dataframe(final_df, hide_index=True)
|
| 837 |
+
|
| 838 |
+
# Initialize an empty dictionary to hold categories and their variables
|
| 839 |
+
category_dict = {}
|
| 840 |
+
|
| 841 |
+
# Iterate over each row in the edited DataFrame to populate the dictionary
|
| 842 |
+
for i, row in edited_stats_df.iterrows():
|
| 843 |
+
column = row["Column"]
|
| 844 |
+
category = row["Category"] # The category chosen by the user for this variable
|
| 845 |
+
|
| 846 |
+
# Check if the category already exists in the dictionary
|
| 847 |
+
if category not in category_dict:
|
| 848 |
+
# If not, initialize it with the current column as its first element
|
| 849 |
+
category_dict[category] = [column]
|
| 850 |
+
else:
|
| 851 |
+
# If it exists, append the current column to the list of variables under this category
|
| 852 |
+
category_dict[category].append(column)
|
| 853 |
+
|
| 854 |
+
# Add Date, DMA and Panel in category dictionary
|
| 855 |
+
category_dict.update({"Date": ["date"]})
|
| 856 |
+
if "DMA" in final_df.columns:
|
| 857 |
+
category_dict["DMA"] = ["DMA"]
|
| 858 |
+
|
| 859 |
+
if "Panel" in final_df.columns:
|
| 860 |
+
category_dict["Panel"] = ["Panel"]
|
| 861 |
+
|
| 862 |
+
# Display the dictionary
|
| 863 |
+
st.markdown("#### Variable Category")
|
| 864 |
+
for category, variables in category_dict.items():
|
| 865 |
+
# Check if there are multiple variables to handle "and" insertion correctly
|
| 866 |
+
if len(variables) > 1:
|
| 867 |
+
# Join all but the last variable with ", ", then add " and " before the last variable
|
| 868 |
+
variables_str = ", ".join(variables[:-1]) + " and " + variables[-1]
|
| 869 |
+
else:
|
| 870 |
+
# If there's only one variable, no need for "and"
|
| 871 |
+
variables_str = variables[0]
|
| 872 |
+
|
| 873 |
+
# Display the category and its variables in the desired format
|
| 874 |
+
st.markdown(
|
| 875 |
+
f"<div style='text-align: justify;'><strong>{category}:</strong> {variables_str}</div>",
|
| 876 |
+
unsafe_allow_html=True,
|
| 877 |
+
)
|
| 878 |
+
|
| 879 |
+
# Store final dataframe and bin dictionary into session state
|
| 880 |
+
st.session_state["final_df"], st.session_state["bin_dict"] = final_df, category_dict
|
| 881 |
+
|
| 882 |
+
if st.button('Save Changes'):
|
| 883 |
+
|
| 884 |
+
with open("Pickle_files/main_df", 'wb') as f:
|
| 885 |
+
pickle.dump(st.session_state["final_df"], f)
|
| 886 |
+
with open("Pickle_files/category_dict",'wb') as c:
|
| 887 |
+
pickle.dump(st.session_state["bin_dict"],c)
|
| 888 |
+
st.success('Changes Saved!')
|
| 889 |
+
|
| 890 |
+
|
| 891 |
+
|
pages/actual_data.csv
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
const,clicks_search_decay.2,impressions_tv_lag3,online_edu_trend_lag3,clicks_digital_lag2_decay.3,impressions_streaming_lag2_decay.4,covid_cases_lag3,unemployement_rate_lead4,season,flag_Aug_1,flag_Aug_2,flag_Aug_3,flag_dec_1,flag_dec_-1,flag_dec_-2,flag_dec_-3,flag_easter_-1,flag_easter_-2,flag_may_-1,flag_may_-2,flag_jun_-1,flag_jun_-2,covid_flag1,flag_june28,flag_aug13,flag_sep13,flag_mar_feb,date,total_prospect_id
|
| 2 |
+
1.0,0.03264506089026503,0.0,0.0,0.0,0.11920857922376585,0.0,0.2448979591836735,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-11-10,3106
|
| 3 |
+
1.0,0.1203178311529351,0.0,0.0,0.0,0.23575959332216032,0.0,0.2448979591836735,101,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-11-17,7809
|
| 4 |
+
1.0,0.037674240888288246,0.0,0.0,0.30427286753070926,0.14866425214344534,0.0,0.2448979591836735,102,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-11-24,5658
|
| 5 |
+
1.0,0.114056065999327,0.25459834519940233,0.5700000000000001,0.3210660307498862,0.06375317695001911,0.0,0.2448979591836735,103,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-12-01,7528
|
| 6 |
+
1.0,0.15091848146432302,0.04759636387261456,0.58,0.2652143429433443,0.02550166207848893,0.0,0.2380952380952381,104,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-12-08,8913
|
| 7 |
+
1.0,0.09691798534505919,0.0,0.41000000000000003,0.27398476053158455,0.22803554179688423,0.0,0.2380952380952381,105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-12-15,7974
|
| 8 |
+
1.0,0.0,0.2185391903071715,0.53,0.3093665823461814,0.3016670242357716,0.0,0.2380952380952381,106,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-12-22,5034
|
| 9 |
+
1.0,0.06818143419410627,0.0645557652165116,0.6,0.35005256364095544,0.3915886857834677,0.0,0.2380952380952381,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2019-12-29,8296
|
| 10 |
+
1.0,0.19748095587743647,0.0,0.49,0.2866388037412839,0.4644891817948484,0.0,0.2380952380952381,108,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-01-05,10953
|
| 11 |
+
1.0,0.2718903484441833,0.31632836028874944,0.42,0.38339772931601046,0.4758788391710054,0.0,0.2380952380952381,109,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2020-01-12,11583
|
| 12 |
+
1.0,0.29329394272923165,0.710207473795361,0.56,0.4716341482535363,0.47415700741999534,0.0,0.2380952380952381,110,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2020-01-19,11650
|
| 13 |
+
1.0,0.3150710926081645,0.6225458397661645,0.66,0.5560651882029227,0.2282082561307921,0.0,0.2380952380952381,111,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-01-26,10086
|
| 14 |
+
1.0,0.23335326208386092,0.5093471390869946,0.65,0.5990392189890996,0.09128427138188955,0.0,0.2993197278911565,112,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-02-02,8454
|
| 15 |
+
1.0,0.18339704064539092,0.46920681970876166,0.66,0.5097387360461574,0.03651393215188798,0.0,0.2993197278911565,113,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-02-09,7842
|
| 16 |
+
1.0,0.1829206162885479,0.5702922924005152,0.64,0.3647117781342298,0.5333315970976881,0.0,0.2993197278911565,114,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-02-16,8528
|
| 17 |
+
1.0,0.17708137647064887,0.4762803199026322,0.62,0.2994390381863003,0.9999999999999999,0.0,0.2993197278911565,115,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-02-23,9230
|
| 18 |
+
1.0,0.2110785179466496,0.31643298954206356,0.65,0.318727924805625,0.5153399788387041,0.0,0.2993197278911565,116,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-03-01,8210
|
| 19 |
+
1.0,0.1922309642774856,0.35110354589746834,0.65,0.3435805763353255,0.20613623376787482,0.0,1.0,117,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-03-08,6573
|
| 20 |
+
1.0,0.1174971533357681,0.4397302099507956,0.64,0.37079693119819457,0.08245451214041095,0.0,1.0,118,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2020-03-15,4464
|
| 21 |
+
1.0,0.04487177585471158,0.5651604986093057,0.66,0.3797815418753292,0.032981804856164386,3.6661729553753427e-06,1.0,119,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2020-03-22,5498
|
| 22 |
+
1.0,0.04417426781579725,0.5142518574426083,0.77,0.3239901926717436,0.013192796475509808,0.00016497778299189042,1.0,120,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-03-29,7134
|
| 23 |
+
1.0,0.09508966430933447,0.4246084040047787,1.0,0.22766051203571303,0.005277118590203924,0.01074555293220513,0.8979591836734694,121,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,2020-04-05,6507
|
| 24 |
+
1.0,0.1727148072921107,0.3306303340730278,0.92,0.2557126494916798,0.0021108474360815696,0.07506489126131015,0.8979591836734694,122,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,2020-04-12,6752
|
| 25 |
+
1.0,0.2757761792524949,0.9059477066272279,0.87,0.2910560761584964,0.0008443389744326279,0.11051311756683434,0.8979591836734694,123,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-04-19,7874
|
| 26 |
+
1.0,0.46164669127102737,1.0,0.8200000000000001,0.29288325042575475,0.0003377355897730512,0.1323451775160945,0.8979591836734694,124,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-04-26,8706
|
| 27 |
+
1.0,0.3631365926708698,0.8555262504044332,0.85,0.3143348639913703,0.00013509423590922048,0.12527679605813083,0.8979591836734694,125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-05-03,9593
|
| 28 |
+
1.0,0.3556269301486625,0.5998066602658987,0.8,0.3573452157072908,5.4838924587260594e-05,0.08418266340132861,0.7482993197278912,126,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-05-10,9554
|
| 29 |
+
1.0,0.3898924329688705,0.31953123019194307,0.76,0.3492819601843694,0.08837696494340691,0.06699197841357364,0.7482993197278912,127,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-05-17,9461
|
| 30 |
+
1.0,0.3270785638817633,0.5040802333471541,0.88,0.37224504100306005,0.12944061135952373,0.04806352744497074,0.7482993197278912,128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-05-24,8347
|
| 31 |
+
1.0,0.29596428185745655,0.6228739252579004,0.8300000000000001,0.3873711562094451,0.14079607140381442,0.028926104617911456,0.7482993197278912,129,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-05-31,7926
|
| 32 |
+
1.0,0.23446621861142697,0.644779308361226,0.8,0.3519020717491842,0.15750706055823313,0.024482702995996537,0.6938775510204082,130,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-06-07,8606
|
| 33 |
+
1.0,0.2202508917985891,0.726916988225644,0.71,0.32726146750928653,0.0797309833640819,0.022000703905207433,0.6938775510204082,131,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-06-14,7573
|
| 34 |
+
1.0,0.18610614076735926,0.5963517592669729,0.73,0.31618831243754153,0.03501476889363339,0.015086301711369536,0.6938775510204082,132,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2020-06-21,6983
|
| 35 |
+
1.0,0.1568177529621934,0.6764095796293655,0.75,0.2836099513597926,0.014005944823975384,0.011489786042146325,0.6938775510204082,133,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-06-28,6277
|
| 36 |
+
1.0,0.22774801916471138,0.6466210070345804,0.72,0.25409997289933184,0.006272411362367827,0.00871449311492719,0.5714285714285715,134,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-07-05,7421
|
| 37 |
+
1.0,0.24542124594101095,0.6580063264819511,0.73,0.2516667689694555,0.05947462601462651,0.008318546435746652,0.5714285714285715,135,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-07-12,7852
|
| 38 |
+
1.0,0.24895270375190542,0.32749815383926373,0.68,0.2671053898526598,0.0888609058832765,0.008014254080450499,0.5714285714285715,136,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-07-19,7396
|
| 39 |
+
1.0,0.16285259960994197,0.3666961464656464,0.78,0.26077100654286645,0.12420199588573878,0.008058248155915004,0.5714285714285715,137,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-07-26,7041
|
| 40 |
+
1.0,0.16864346155569104,0.39341698388602436,0.84,0.25893225300958655,0.10423952696584138,0.00920209411799211,0.5714285714285715,138,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-08-02,7470
|
| 41 |
+
1.0,0.22582910125625383,0.41507293852636135,0.8300000000000001,0.2528768986269057,0.08197739941078482,0.009315745479608745,0.5374149659863946,139,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-08-09,8725
|
| 42 |
+
1.0,0.2778946696783185,0.7857143231388266,0.8,0.2772125371796957,0.07178679747906064,0.007237025413910927,0.5374149659863946,140,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-08-16,9657
|
| 43 |
+
1.0,0.3062154076077969,0.434016630925742,0.87,0.33174759696083367,0.12078972986041582,0.006500124649880482,0.5374149659863946,141,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2020-08-23,10000
|
| 44 |
+
1.0,0.2851073700683267,0.4051792323256236,0.8200000000000001,0.3621387745268235,0.1539969659046611,0.006118842662521447,0.5374149659863946,142,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-08-30,8941
|
| 45 |
+
1.0,0.25999778433367665,0.4113785668398346,0.77,0.3604714968693371,0.1462622685965232,0.006375474769397721,0.4693877551020409,143,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-09-06,8507
|
| 46 |
+
1.0,0.2947500457787596,0.43576671635701947,0.74,0.3084711376902622,0.1030893445960345,0.0060051913009048115,0.4693877551020409,144,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2020-09-13,9887
|
| 47 |
+
1.0,0.3239559328273078,0.40721834097732834,0.72,0.24061271129609485,0.08422768334333634,0.006456130574415978,0.4693877551020409,145,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-09-20,9627
|
| 48 |
+
1.0,0.3189849597494306,0.4831656702512836,0.68,0.28577062852640756,0.054400116894051116,0.006401137980085348,0.4693877551020409,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-09-27,8735
|
| 49 |
+
1.0,0.2930673557404469,0.5423730023996388,0.62,0.32330756771945346,0.02176006539088146,0.007566980979894707,0.45578231292517013,147,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-10-04,8138
|
| 50 |
+
1.0,0.27381401410957934,0.48862464971809444,0.59,0.33668984325037016,0.008704026156352586,0.009172764734349107,0.45578231292517013,148,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-10-11,7966
|
| 51 |
+
1.0,0.21658154029531146,0.5162854532967293,0.55,0.44481231480084876,0.003481610462541034,0.012223020633221393,0.45578231292517013,149,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-10-18,8109
|
| 52 |
+
1.0,0.21772903332032795,0.47368257634991157,0.6,0.46141705479304307,0.0013926441850164136,0.013601501664442522,0.45578231292517013,150,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-10-25,7848
|
| 53 |
+
1.0,0.16712357438522701,0.5132571164009214,0.5,0.38402389059771924,0.0005570576740065655,0.012915927321787332,0.45578231292517013,151,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-11-01,6516
|
| 54 |
+
1.0,0.1814031347156822,0.5409537987241609,0.5,0.2968208337801042,0.00022282306960262618,0.013091903623645349,0.45578231292517013,152,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-11-08,7233
|
| 55 |
+
1.0,0.16852532779394064,0.49490997931858044,0.5,0.22663075929954526,8.912922784105048e-05,0.014624363918992243,0.45578231292517013,153,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-11-15,7409
|
| 56 |
+
1.0,0.10492104198879731,0.4086344123814518,0.41000000000000003,0.21669561761817938,3.565169113642019e-05,0.016127494830696133,0.45578231292517013,154,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-11-22,6232
|
| 57 |
+
1.0,0.16920169406380464,0.45151008168804235,0.49,0.21833619946593313,1.4260676454568076e-05,0.024849320291534072,0.45578231292517013,155,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-11-29,8170
|
| 58 |
+
1.0,0.1305885456099783,0.4543635808918873,0.47000000000000003,0.1596898931167178,5.704270581827231e-06,0.03519159419864792,0.435374149659864,156,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-12-06,7075
|
| 59 |
+
1.0,0.1214984593864375,0.35070760971315756,0.4,0.15417676852356046,2.2817082327308923e-06,0.041732046751037526,0.435374149659864,157,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-12-13,7379
|
| 60 |
+
1.0,0.057042007816384965,0.32470890321593604,0.47000000000000003,0.15442387578570832,9.126832930923571e-07,0.049892947749703036,0.435374149659864,158,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-12-20,5442
|
| 61 |
+
1.0,0.12406882983279183,0.3135816516054531,0.45,0.1671308209739812,3.650733172369429e-07,0.0686930826648678,0.435374149659864,159,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2020-12-27,7735
|
| 62 |
+
1.0,0.24786523070013738,0.3102913429236421,0.42,0.16347790840061424,1.4602932689477716e-07,0.0732574679943101,0.435374149659864,160,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-01-03,9754
|
| 63 |
+
1.0,0.26083059672146286,0.2649240941306087,0.34,0.25327016920452516,5.841173075791087e-08,0.07444897420480709,0.4217687074829932,161,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2021-01-10,10641
|
| 64 |
+
1.0,0.24028847292133387,0.6513962629200784,0.38,0.3773812732234543,2.3364692303164347e-08,0.08318546435746653,0.4217687074829932,162,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2021-01-17,10230
|
| 65 |
+
1.0,0.31526302386797916,0.531674302460824,0.47000000000000003,0.3527386460097067,9.345876921265738e-09,0.10258685163731283,0.4217687074829932,163,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-01-24,10352
|
| 66 |
+
1.0,0.2966293410018717,0.44836670500794606,0.47000000000000003,0.3711695518795665,3.738350768506295e-09,0.13234151134313912,0.4217687074829932,164,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-01-31,9216
|
| 67 |
+
1.0,0.20088776123137192,0.3815806999416851,0.45,0.33580461662371014,1.4953403074025183e-09,0.12043744775703538,0.40816326530612246,165,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-02-07,8421
|
| 68 |
+
1.0,0.173394454128539,0.343687050600215,0.48,0.3277941002786073,5.981361229610074e-10,0.11271648751301491,0.40816326530612246,166,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-02-14,9281
|
| 69 |
+
1.0,0.1777198044422716,0.33051072402008147,0.5,0.31487397296804576,2.3925444918440296e-10,0.109699227170741,0.40816326530612246,167,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-02-21,8891
|
| 70 |
+
1.0,0.1850269016675808,0.30627520154343757,0.46,0.3133091660972597,9.570177967376119e-11,0.08255854878209734,0.40816326530612246,168,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-02-28,8169
|
| 71 |
+
1.0,0.2529549962208855,0.298123038215738,0.42,0.3358964981168952,3.828071186950448e-11,0.08351908609640568,0.40816326530612246,169,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-03-07,8724
|
| 72 |
+
1.0,0.213028120324469,0.3267901551549544,0.44,0.3038053348505854,1.531228474780179e-11,0.07285052279626343,0.40816326530612246,170,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-03-14,8194
|
| 73 |
+
1.0,0.16441430466323353,0.25967469209260036,0.5,0.32087357753439977,6.124913899120717e-12,0.07822879852179906,0.40816326530612246,171,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-03-21,8254
|
| 74 |
+
1.0,0.11053130189212229,0.260168451958828,0.42,0.3279459500984871,2.449965559648287e-12,0.07333812379932836,0.40816326530612246,172,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-03-28,7026
|
| 75 |
+
1.0,0.06917021315146277,0.0,0.38,0.37411287881420296,9.799862238593149e-13,0.07465061371735272,0.39455782312925175,173,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-04-04,6412
|
| 76 |
+
1.0,0.06728264676731566,0.0,0.44,0.4347510050616973,3.9199448954372595e-13,0.0732721326861316,0.39455782312925175,174,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,2021-04-11,6297
|
| 77 |
+
1.0,0.10167805497311716,0.0,0.43,0.4574504815633023,1.5679779581749037e-13,0.07982724993034271,0.39455782312925175,175,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,2021-04-18,6687
|
| 78 |
+
1.0,0.1734619149834527,0.0,0.48,0.48912312446006045,6.271911832699615e-14,0.06941165256412136,0.39455782312925175,176,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-04-25,8430
|
| 79 |
+
1.0,0.2040432878056308,0.0,0.46,0.44466429049983563,2.5087647330798465e-14,0.06276854716898124,0.39455782312925175,177,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-05-02,8025
|
| 80 |
+
1.0,0.20788046814877387,0.0,0.48,0.5722675873212515,1.0035058932319387e-14,0.04882242524673344,0.40136054421768713,178,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-05-09,8242
|
| 81 |
+
1.0,0.14929264058846564,0.0,0.5,0.45913415146070335,4.014023572927755e-15,0.033618806000791895,0.40136054421768713,179,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-05-16,8280
|
| 82 |
+
1.0,0.11694210039888364,0.0,0.51,0.39528662679579885,1.6056094291711022e-15,0.025182942030473228,0.40136054421768713,180,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-05-23,7909
|
| 83 |
+
1.0,0.055184035342337234,0.0,0.51,0.3880077087936407,6.422437716684409e-16,0.017652622780132275,0.40136054421768713,181,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-05-30,7574
|
| 84 |
+
1.0,0.04358787034563821,0.0,0.5,0.3863265622647678,2.568975086673764e-16,0.012651962869000308,0.3673469387755103,182,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-06-06,7270
|
| 85 |
+
1.0,0.03833609653008979,0.0,0.46,0.3784495643657444,1.0275900346695056e-16,0.008835476822454577,0.3673469387755103,183,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-06-13,6716
|
| 86 |
+
1.0,0.06111263589867566,0.0,0.48,0.38862024435317233,4.1103601386780226e-17,0.005939200187708055,0.3673469387755103,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-06-20,6944
|
| 87 |
+
1.0,0.07119833324643848,0.0,0.44,0.4039000969934476,1.644144055471209e-17,0.004967664354533589,0.3673469387755103,185,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2021-06-27,6803
|
| 88 |
+
1.0,0.0659956847282599,0.0,0.45,0.4420872417106599,6.576576221884836e-18,0.004359079643941282,0.3537414965986395,186,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-07-04,7019
|
| 89 |
+
1.0,0.12577031397293442,0.0,0.45,0.4950177419852857,2.630630488753935e-18,0.003977797656582247,0.3537414965986395,187,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-07-11,8254
|
| 90 |
+
1.0,0.1502746019886232,0.0,0.45,0.5650602702260171,1.052252195501574e-18,0.0040621196345558795,0.3537414965986395,188,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-07-18,7804
|
| 91 |
+
1.0,0.21001397285486328,0.0,0.42,0.594015126140436,4.209008782006296e-19,0.004952999662712088,0.3537414965986395,189,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-07-25,8212
|
| 92 |
+
1.0,0.23464189851384848,0.0,0.46,0.5484130743981998,1.6836035128025183e-19,0.008076579020691881,0.3537414965986395,190,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-08-01,8378
|
| 93 |
+
1.0,0.23496148203757855,0.0,0.47000000000000003,0.5324473242588711,6.734414051210074e-20,0.01220102359548914,0.3197278911564626,191,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-08-08,9496
|
| 94 |
+
1.0,0.23319893582092505,0.0,0.53,0.5532778727756644,2.6937656204840295e-20,0.020152952735698258,0.3197278911564626,192,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-08-15,9511
|
| 95 |
+
1.0,0.23262329847201318,0.0,0.49,0.7309984534528141,1.0775062481936118e-20,0.029028757460661962,0.3197278911564626,193,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-08-22,9569
|
| 96 |
+
1.0,0.18495638415853394,0.0,0.46,0.8724050615489382,4.310024992774448e-21,0.03698435277382646,0.3197278911564626,194,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-08-29,7928
|
| 97 |
+
1.0,0.2921700012245981,0.0,0.49,1.0,1.7240099971097793e-21,0.03982197064128697,0.3129251700680272,195,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-09-05,7840
|
| 98 |
+
1.0,0.4172971677569805,0.0,0.48,0.8193686075762131,6.896039988439117e-22,0.03868179085216524,0.3129251700680272,196,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-09-12,9521
|
| 99 |
+
1.0,0.5004920981884484,0.0,0.53,0.4496097944711011,2.758415995375647e-22,0.03902274493701515,0.3129251700680272,197,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-09-19,9451
|
| 100 |
+
1.0,0.6383788968475093,0.0,0.47000000000000003,0.3701822126418114,1.1033663981502588e-22,0.03567186285580209,0.3129251700680272,198,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-09-26,8898
|
| 101 |
+
1.0,0.6501651617929107,0.0,0.51,0.34258196039636274,4.413465592601035e-23,0.0352539191388893,0.3129251700680272,199,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-10-03,8441
|
| 102 |
+
1.0,0.6649283374522998,0.0,0.51,0.31355701111053985,1.7653862370404143e-23,0.03635010485254652,0.28571428571428575,200,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-10-10,8788
|
| 103 |
+
1.0,0.6097114754591861,0.0,0.51,0.32306971094469733,7.061544948161657e-24,0.031323781730726925,0.28571428571428575,201,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-10-17,9569
|
| 104 |
+
1.0,0.3964279757062242,0.0,0.51,0.33051520280988034,2.8246179792646632e-24,0.02719933715592967,0.28571428571428575,202,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-10-24,9008
|
| 105 |
+
1.0,0.33105364706311086,0.0,0.47000000000000003,0.3259978333423606,1.1298471917058652e-24,0.025967503042923553,0.28571428571428575,203,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-10-31,8495
|
| 106 |
+
1.0,0.31714045716637634,0.0,0.55,0.3045528431182349,4.519388766823461e-25,0.02263128565353199,0.2653061224489796,204,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-11-07,8807
|
| 107 |
+
1.0,0.28268319082761023,0.0,0.49,0.31370309424641213,1.8077555067293845e-25,0.01786159463858867,0.2653061224489796,205,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-11-14,8385
|
| 108 |
+
1.0,0.15774740707436136,0.0,0.51,0.37945364695975814,7.231022026917538e-26,0.016409790148260033,0.2653061224489796,206,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-11-21,6964
|
| 109 |
+
1.0,0.2836203500514554,0.0,0.55,0.36793503370466,2.892408810767015e-26,0.01882946429880776,0.2653061224489796,207,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-11-28,9340
|
| 110 |
+
1.0,0.33646919882766096,0.0,0.49,0.3299836196379579,1.1569635243068062e-26,0.023555161238286576,0.272108843537415,208,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-12-05,8632
|
| 111 |
+
1.0,0.361268166630245,0.0,0.38,0.3243428164088717,4.6278540972272255e-27,0.029421037966887126,0.272108843537415,209,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-12-12,9271
|
| 112 |
+
1.0,0.21850759166298056,0.0,0.51,0.34100191273497404,1.8511416388908902e-27,0.029549354020325262,0.272108843537415,210,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-12-19,7663
|
| 113 |
+
1.0,0.2156152088113536,0.0,0.43,0.3876459690915292,7.404566555563562e-28,0.04853646375621416,0.272108843537415,211,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2021-12-26,7888
|
| 114 |
+
1.0,0.4122692273972545,0.0,0.42,0.44121852053456856,2.961826622225425e-28,0.07303383144403221,0.272108843537415,212,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-01-02,11088
|
| 115 |
+
1.0,0.5580863257308297,0.0,0.42,0.33648328199770844,1.18473064889017e-28,0.2914790808171166,0.2585034013605442,213,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-01-09,12850
|
| 116 |
+
1.0,0.5441541455767391,0.0,0.45,0.5258301345263098,4.7389225955606806e-29,0.6228644542534939,0.2585034013605442,214,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2022-01-16,12768
|
| 117 |
+
1.0,0.37953926965668333,0.0,0.51,0.6191133700101356,1.8955690382242722e-29,1.0,0.2585034013605442,215,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2022-01-23,11023
|
| 118 |
+
1.0,0.3422525462363791,0.0,0.5,0.6600516747429145,7.582276152897087e-30,0.8603298089190655,0.2585034013605442,216,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-01-30,10317
|
| 119 |
+
1.0,0.3679329127754763,0.0,0.49,0.6150147631969254,3.0329104611588346e-30,0.3851571321728674,0.2448979591836735,217,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-02-06,10109
|
| 120 |
+
1.0,0.3530129569359208,0.0,0.49,0.5435710104633258,1.2131641844635335e-30,0.18207314748280565,0.2448979591836735,218,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2022-02-13,10233
|
| 121 |
+
1.0,0.3628237688509028,0.0,0.48,0.5395383650448762,4.852656737854129e-31,0.08532284319045035,0.2448979591836735,219,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2022-02-20,10660
|
| 122 |
+
1.0,0.3535562124344392,0.0,0.49,0.3713089856353334,1.941062695141646e-31,0.04778123212740684,0.2448979591836735,220,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2022-02-27,9862
|
| 123 |
+
1.0,0.35851767100446613,0.0,0.49,0.33021424233802193,7.764250780566529e-32,0.028365180155739026,0.2448979591836735,221,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2022-03-06,10393
|
| 124 |
+
1.0,0.3648140365425708,0.0,0.53,0.29899648842829235,3.105700312226557e-32,0.019053100849085656,0.2448979591836735,222,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2022-03-13,9914
|
| 125 |
+
1.0,0.417768904168966,0.0,0.46,0.30801461857263196,1.242280124890568e-32,0.014096435013418193,0.2448979591836735,223,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2022-03-20,11027
|
| 126 |
+
1.0,0.45364666714531404,0.0,0.5,0.29874033139572204,4.9691204995617213e-33,0.013440190054406007,0.2448979591836735,224,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-03-27,10066
|
| 127 |
+
1.0,0.45997433293937545,0.0,0.45,0.3080341285301519,1.9876481998241388e-33,0.014672024167412121,0.2448979591836735,225,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-04-03,8722
|
| 128 |
+
1.0,0.4245480429075594,0.0,0.46,0.304189689538618,7.950592799291056e-34,0.01936472555029256,0.2448979591836735,226,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,2022-04-10,7805
|
| 129 |
+
1.0,0.4463068738641009,0.0,0.54,0.307818077305473,3.1802371197109226e-34,0.027822586558343475,0.2448979591836735,227,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,2022-04-17,8519
|
| 130 |
+
1.0,0.6012222981571669,0.0,0.53,0.29394180576819906,1.272094847878869e-34,0.033340176856183366,0.2448979591836735,228,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-04-24,10084
|
| 131 |
+
1.0,0.6804106164543928,0.0,0.5,0.28219281269675367,5.088379391460478e-35,0.04576117082899503,0.2448979591836735,229,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-05-01,10291
|
| 132 |
+
1.0,0.62805714350389,0.0,0.54,0.30839694661979145,2.035351756529193e-35,0.05172603422739071,0.2448979591836735,230,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-05-08,9743
|
| 133 |
+
1.0,0.7470007501508245,0.0,0.54,0.3120111152265925,8.141407025566787e-36,0.04952999662712088,0.2448979591836735,231,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-05-15,10759
|
| 134 |
+
1.0,0.6460736106378411,0.0,0.55,0.2905779236460707,3.25656280967673e-36,0.06457597043598129,0.2448979591836735,232,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-05-22,9845
|
| 135 |
+
1.0,0.5732108245519132,0.0,0.52,0.38068837954927237,1.3026251233207076e-36,0.080201199571791,0.2448979591836735,233,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-05-29,9499
|
| 136 |
+
1.0,0.5996683384067256,0.0,0.5,0.3940488499594224,5.210500487782985e-37,0.09049581323048496,0.40680272108843546,234,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-06-05,10021
|
| 137 |
+
1.0,0.5630659455826548,0.0,0.54,0.4539755399873685,2.0842001896133483e-37,0.09128037424293528,0.40680272108843546,235,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-06-12,10112
|
| 138 |
+
1.0,0.5482324249484887,0.0,0.45,0.48814019600803654,8.336800703454939e-38,0.08289217052103649,0.40680272108843546,236,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-06-19,10034
|
| 139 |
+
1.0,0.5485743918729864,0.0,0.47000000000000003,0.475428506654356,3.3347202263835196e-38,0.06987359035649866,0.40680272108843546,237,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2022-06-26,9209
|
| 140 |
+
1.0,0.5559932625646005,0.0,0.43,0.510072176038165,1.333888035554951e-38,0.06264756346145385,0.40680272108843546,238,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-07-03,10265
|
| 141 |
+
1.0,0.6089718159266746,0.0,0.45,0.44215508529036335,5.33555159223524e-39,0.0627612148230705,0.40680272108843546,239,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-07-10,10033
|
| 142 |
+
1.0,0.6101706458097598,0.0,0.48,0.41550269661979555,2.1342200869095313e-39,0.07072780865510112,0.40680272108843546,240,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-07-17,9790
|
| 143 |
+
1.0,0.6111403594460636,0.0,0.44,0.437146146258812,8.536874847792479e-40,0.07964760745552932,0.40680272108843546,241,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-07-24,9629
|
| 144 |
+
1.0,0.6451477728019566,0.0,0.44,0.4975101423754845,3.4147444392713438e-40,0.0893739643061401,0.40680272108843546,242,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-07-31,10134
|
| 145 |
+
1.0,0.7267513590970145,0.0,0.44,0.5042632593424633,1.3658922758628901e-40,0.09389435556011791,0.40680272108843546,243,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-08-07,12029
|
| 146 |
+
1.0,0.832744074444703,0.0,0.46,0.5840915039533217,5.463514104995084e-41,0.08482790984147467,0.40680272108843546,244,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-08-14,12886
|
| 147 |
+
1.0,0.8546151893753493,0.0,0.49,0.6374603327364593,2.1853506435415578e-41,0.07962194424484169,0.40680272108843546,245,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-08-21,12027
|
| 148 |
+
1.0,0.9999999999999998,0.0,0.55,0.6022458246191313,8.740852589601472e-42,0.07178366646624922,0.40680272108843546,246,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-08-28,11375
|
| 149 |
+
1.0,0.860672618209781,0.0,0.48,0.5735957859704555,3.495791051275827e-42,0.05725095687114135,0.40680272108843546,247,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-09-04,10824
|
| 150 |
+
1.0,0.8622728019659036,0.0,0.54,0.5790428094946118,1.39776643594557e-42,0.050739833702394745,0.40680272108843546,248,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-09-11,12285
|
| 151 |
+
1.0,0.7774120906393625,0.0,0.55,0.7618650061054455,5.585565898134668e-43,0.0440857297883885,0.40680272108843546,249,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-09-18,12146
|
| 152 |
+
1.0,0.6580209603679659,0.0,0.52,0.8137272725878776,2.2287265136062566e-43,0.039975949905412735,0.40680272108843546,250,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-09-25,10881
|
| 153 |
+
1.0,0.9480011027127861,0.0,0.52,0.7867690657367606,8.859907597948911e-44,0.03648941942485079,0.40680272108843546,251,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-10-02,11373
|
| 154 |
+
1.0,0.709096498806814,0.0,0.46,0.7292818780372798,3.4889645827034517e-44,0.04076784326377381,0.40680272108843546,252,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-10-09,10230
|
| 155 |
+
1.0,0.5414415970743589,0.0,0.45,0.6974583695681711,1.340587376605267e-44,0.04368978310920796,0.0,253,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-10-16,11557
|
| 156 |
+
1.0,0.6081525119323576,0.0,0.54,0.6240593695822464,4.812364941659934e-45,0.041156457597043596,0.0,254,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-10-23,10805
|
| 157 |
+
1.0,0.5960421531458853,0.0,0.45,0.5899287906913332,1.3749614119028383e-45,0.03843982343711047,0.0,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-10-30,9709
|
| 158 |
+
1.0,0.848521629204434,0.0,0.47000000000000003,0.6201930426013046,0.0,0.040723849188309305,0.0,256,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2022-11-06,10098
|