Spaces:
Paused
Paused
| import pandas as pd | |
| from sklearn.preprocessing import StandardScaler, PolynomialFeatures | |
| def load_data(file_path): | |
| """Load dataset from a CSV file.""" | |
| return pd.read_csv(file_path) | |
| def scale_features(df): | |
| """Scale numerical features using StandardScaler.""" | |
| numerical_cols = df.select_dtypes(include=['float64', 'int64']).columns | |
| scaler = StandardScaler() | |
| df[numerical_cols] = scaler.fit_transform(df[numerical_cols]) | |
| return df | |
| def create_polynomial_features(df, degree=2, selected_columns=None): | |
| """Create polynomial features. | |
| Args: | |
| df: Input DataFrame | |
| degree: Degree of polynomial features (default: 2) | |
| selected_columns: List of column names to use for polynomial features. | |
| If None, uses all numerical columns (default: None) | |
| """ | |
| if selected_columns is not None: | |
| numerical_cols = [col for col in selected_columns if col in df.columns] | |
| if not numerical_cols: | |
| raise ValueError("None of the selected columns found in DataFrame") | |
| else: | |
| numerical_cols = df.select_dtypes(include=['float64', 'int64']).columns | |
| poly = PolynomialFeatures(degree=degree, include_bias=False) | |
| poly_features = poly.fit_transform(df[numerical_cols]) | |
| poly_feature_names = poly.get_feature_names_out(numerical_cols) | |
| poly_df = pd.DataFrame(poly_features, columns=poly_feature_names) | |
| df = df.join(poly_df) | |
| return df | |
| def process_data(file_path): | |
| """Load, process, and return the dataset.""" | |
| df = load_data(file_path) | |
| df = scale_features(df) | |
| df = create_polynomial_features(df) | |
| return df | |
| if __name__ == "__main__": | |
| file_path = 'path_to_your_data.csv' # Replace with your actual file path | |
| processed_data = process_data(file_path) | |
| processed_data.to_csv('processed_data_with_features.csv', index=False) | |