Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import transformers | |
| import torch | |
| # Load the model and tokenizer | |
| model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base") | |
| tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base") | |
| # Define the function for sentiment analysis | |
| def predict_sentiment(text): | |
| # Load the pipeline | |
| pipeline = transformers.pipeline("sentiment-analysis", model = "DeeeTeeee01/mytest_trainer_roberta-base", tokenizer= "DeeeTeeee01/mytest_trainer_roberta-base") | |
| # Predict the sentiment | |
| prediction = pipeline(text) | |
| sentiment = prediction[0]["label"] | |
| score = prediction[0]["score"] | |
| return sentiment, score | |
| # Setting the page configurations | |
| st.set_page_config( | |
| page_title="Sentiment Analysis App", | |
| page_icon=":smile:", | |
| layout="wide", | |
| initial_sidebar_state="auto", | |
| ) | |
| # Add description and title | |
| st.write(""" | |
| # Twit Analyzer | |
| Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment! | |
| """) | |
| # Add image | |
| image = st.image("sentiment.jpeg", width=400) | |
| # Get user input | |
| text = st.text_input("Type here:") | |
| # Add Predict button | |
| predict_button = st.button("Predict") | |
| # Define the CSS style for the app | |
| st.markdown( | |
| """ | |
| <style> | |
| body { | |
| background: linear-gradient(to right, #4e79a7, #86a8e7); | |
| color: lightblue; | |
| } | |
| h1 { | |
| color: #4e79a7; | |
| } | |
| </style> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| # Show sentiment output | |
| if predict_button and text: | |
| sentiment, score = predict_sentiment(text) | |
| if sentiment == "Positive": | |
| st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
| elif sentiment == "Negative": | |
| st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
| else: | |
| st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
| # import streamlit as st | |
| # import transformers | |
| # import torch | |
| # # Load the model and tokenizer | |
| # model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee") | |
| # tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee") | |
| # # Define the function for sentiment analysis | |
| # @st.cache_resource | |
| # def predict_sentiment(text): | |
| # # Load the pipeline. | |
| # pipeline = transformers.pipeline("sentiment-analysis") | |
| # # Predict the sentiment. | |
| # prediction = pipeline(text) | |
| # sentiment = prediction[0]["label"] | |
| # score = prediction[0]["score"] | |
| # return sentiment, score | |
| # # Setting the page configurations | |
| # st.set_page_config( | |
| # page_title="Sentiment Analysis App", | |
| # page_icon=":smile:", | |
| # layout="wide", | |
| # initial_sidebar_state="auto", | |
| # ) | |
| # # Add description and title | |
| # st.write(""" | |
| # # Predict if your text is Positive, Negative or Nuetral ... | |
| # Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment! | |
| # """) | |
| # # Add image | |
| # image = st.image("sentiment.jpeg", width=400) | |
| # # Get user input | |
| # text = st.text_input("Type here:") | |
| # # Define the CSS style for the app | |
| # st.markdown( | |
| # """ | |
| # <style> | |
| # body { | |
| # background-color: #f5f5f5; | |
| # } | |
| # h1 { | |
| # color: #4e79a7; | |
| # } | |
| # </style> | |
| # """, | |
| # unsafe_allow_html=True | |
| # ) | |
| # # Show sentiment output | |
| # if text: | |
| # sentiment, score = predict_sentiment(text) | |
| # if sentiment == "Positive": | |
| # st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
| # elif sentiment == "Negative": | |
| # st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
| # else: | |
| # st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |