Update app.py
Browse filesupdate activation of top_p, and gpu required time
app.py
CHANGED
|
@@ -63,15 +63,15 @@ LANGUAGES = {
|
|
| 63 |
loaded_models = {}
|
| 64 |
loaded_tokenizers = {}
|
| 65 |
|
|
|
|
| 66 |
@spaces.GPU(duration=60)
|
| 67 |
def load_model_and_tokenizer(model_key):
|
| 68 |
if model_key not in loaded_models:
|
| 69 |
model_info = MODELS[model_key]
|
| 70 |
-
device = "cuda"
|
| 71 |
model = AutoModelForCausalLM.from_pretrained(
|
| 72 |
model_info["model_name"],
|
| 73 |
-
token=HF_TOKEN
|
| 74 |
-
torch_dtype=torch.float16
|
| 75 |
).to(device)
|
| 76 |
loaded_models[model_key] = model
|
| 77 |
|
|
@@ -84,26 +84,31 @@ def load_model_and_tokenizer(model_key):
|
|
| 84 |
tokenizer.pad_token = tokenizer.eos_token
|
| 85 |
loaded_tokenizers[model_key] = tokenizer
|
| 86 |
|
| 87 |
-
|
|
|
|
| 88 |
def generate_text(model_choice, prompt, max_length, temperature, top_p, do_sample):
|
| 89 |
load_model_and_tokenizer(model_choice)
|
| 90 |
|
| 91 |
model = loaded_models[model_choice]
|
| 92 |
tokenizer = loaded_tokenizers[model_choice]
|
| 93 |
-
device = "cuda"
|
| 94 |
|
| 95 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 96 |
|
| 97 |
-
|
| 98 |
-
input_ids
|
| 99 |
-
attention_mask
|
| 100 |
-
max_length
|
| 101 |
-
temperature
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 109 |
|
|
@@ -136,7 +141,7 @@ def update_language(selected_language):
|
|
| 136 |
)
|
| 137 |
|
| 138 |
|
| 139 |
-
@spaces.GPU(duration=
|
| 140 |
def wrapped_generate_text(model_choice, prompt, max_length, temperature, top_p, do_sample):
|
| 141 |
return generate_text(model_choice, prompt, max_length, temperature, top_p, do_sample)
|
| 142 |
|
|
@@ -215,6 +220,12 @@ with gr.Blocks() as iface:
|
|
| 215 |
do_sample_checkbox, generate_button, output_text]
|
| 216 |
)
|
| 217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
generate_button.click(
|
| 219 |
fn=wrapped_generate_text,
|
| 220 |
inputs=[
|
|
|
|
| 63 |
loaded_models = {}
|
| 64 |
loaded_tokenizers = {}
|
| 65 |
|
| 66 |
+
|
| 67 |
@spaces.GPU(duration=60)
|
| 68 |
def load_model_and_tokenizer(model_key):
|
| 69 |
if model_key not in loaded_models:
|
| 70 |
model_info = MODELS[model_key]
|
| 71 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 72 |
model = AutoModelForCausalLM.from_pretrained(
|
| 73 |
model_info["model_name"],
|
| 74 |
+
token=HF_TOKEN
|
|
|
|
| 75 |
).to(device)
|
| 76 |
loaded_models[model_key] = model
|
| 77 |
|
|
|
|
| 84 |
tokenizer.pad_token = tokenizer.eos_token
|
| 85 |
loaded_tokenizers[model_key] = tokenizer
|
| 86 |
|
| 87 |
+
|
| 88 |
+
@spaces.GPU(duration=120)
|
| 89 |
def generate_text(model_choice, prompt, max_length, temperature, top_p, do_sample):
|
| 90 |
load_model_and_tokenizer(model_choice)
|
| 91 |
|
| 92 |
model = loaded_models[model_choice]
|
| 93 |
tokenizer = loaded_tokenizers[model_choice]
|
| 94 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 95 |
|
| 96 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 97 |
|
| 98 |
+
generation_kwargs = {
|
| 99 |
+
"input_ids": inputs["input_ids"],
|
| 100 |
+
"attention_mask": inputs["attention_mask"],
|
| 101 |
+
"max_length": max_length,
|
| 102 |
+
"temperature": temperature,
|
| 103 |
+
"repetition_penalty": 1.2,
|
| 104 |
+
"no_repeat_ngram_size": 2,
|
| 105 |
+
"do_sample": do_sample,
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
if do_sample:
|
| 109 |
+
generation_kwargs["top_p"] = top_p
|
| 110 |
+
|
| 111 |
+
outputs = model.generate(**generation_kwargs)
|
| 112 |
|
| 113 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 114 |
|
|
|
|
| 141 |
)
|
| 142 |
|
| 143 |
|
| 144 |
+
@spaces.GPU(duration=120)
|
| 145 |
def wrapped_generate_text(model_choice, prompt, max_length, temperature, top_p, do_sample):
|
| 146 |
return generate_text(model_choice, prompt, max_length, temperature, top_p, do_sample)
|
| 147 |
|
|
|
|
| 220 |
do_sample_checkbox, generate_button, output_text]
|
| 221 |
)
|
| 222 |
|
| 223 |
+
do_sample_checkbox.change(
|
| 224 |
+
fn=lambda do_sample: gr.update(visible=do_sample),
|
| 225 |
+
inputs=[do_sample_checkbox],
|
| 226 |
+
outputs=[top_p_slider]
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
generate_button.click(
|
| 230 |
fn=wrapped_generate_text,
|
| 231 |
inputs=[
|