File size: 8,159 Bytes
8cf0eef
 
 
 
 
 
 
 
d1f0692
8cf0eef
 
06fd46f
8cf0eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06fd46f
8cf0eef
 
 
 
06fd46f
8cf0eef
 
 
 
 
 
 
06fd46f
8cf0eef
06fd46f
8cf0eef
06fd46f
 
8cf0eef
06fd46f
8cf0eef
 
 
 
 
 
 
06fd46f
8cf0eef
 
 
06fd46f
8cf0eef
 
 
 
06fd46f
8cf0eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06fd46f
 
8cf0eef
 
 
 
 
 
 
b2b9ba7
8cf0eef
 
 
 
06fd46f
 
8cf0eef
 
 
 
 
06fd46f
b2b9ba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06fd46f
8cf0eef
06fd46f
8cf0eef
 
 
06fd46f
d1f0692
8cf0eef
 
06fd46f
8cf0eef
 
 
 
 
 
 
 
 
 
 
 
06fd46f
8cf0eef
 
 
 
 
 
 
 
 
 
 
06fd46f
8cf0eef
 
 
 
1f5e0a5
06fd46f
8cf0eef
eef2fe1
8cf0eef
 
 
 
 
06fd46f
8cf0eef
06fd46f
 
 
b2b9ba7
06fd46f
 
8cf0eef
 
 
8910ed8
06fd46f
 
 
 
d1f0692
06fd46f
d1f0692
06fd46f
d1f0692
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
import dotenv
from sklearn.neighbors import NearestNeighbors


def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)


def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text


def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page-1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list


def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    page_nums = []
    chunks = []

    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i+word_length]
            if (i+word_length) > len(words) and (len(chunk) < word_length) and (
                    len(text_toks) != (idx+1)):
                text_toks[idx+1] = chunk + text_toks[idx+1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks


class SemanticSearch:

    def __init__(self):
        self.use = hub.load(
            'https://tfhub.dev/google/universal-sentence-encoder/4')
        self.fitted = False

    def fit(self, data, batch=1000, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data, batch=batch)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True

    def __call__(self, text, return_data=True):
        inp_emb = self.use([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]

        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors

    def get_text_embedding(self, texts, batch=1000):
        embeddings = []
        for i in range(0, len(texts), batch):
            text_batch = texts[i:(i+batch)]
            emb_batch = self.use(text_batch)
            embeddings.append(emb_batch)
        embeddings = np.vstack(embeddings)
        return embeddings


def load_recommender(path, start_page=1):
    global recommender
    texts = pdf_to_text(path, start_page=start_page)
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender.fit(chunks)
    return 'Corpus Loaded.'


def generate_text(openAI_key, prompt, engine="text-davinci-003"):
    openai.api_key = openAI_key
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=1,
    )
    message = completions.choices[0].text
    return message


def generate_answer(question, openAI_key):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'

    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given."\
              "Cite each reference using [ Page Number] notation (every result has this number at the beginning)."\
              "Citation should be done at the end of each sentence."\
              "If the search results mention multiple subjects with the same name, create separate answers for each."\
              "Only include information found in the results and don't add any additional information."\
              "Make sure the answer is correct and don't output false content."\
              "If the text does not relate to the query, simply state 'Text Not Found in PDF'."\
              "Ignore outlier search results which have nothing to do with the question."\
              "Only answer what is asked."\
              "The answer should be short and concise."\
              "Answer step-by-step."\
              "To answer the query, please follow these instructions:"\
              "Please carefully read through the search results provided and compose a clear and concise response."\
              "When citing information from the search results, please include the page number in square brackets after the relevant text."\
              "If the search results mention multiple subjects with the same name, create separate answers for each."\
              "Only include information found in the search results and avoid adding any additional information."\
              "Be sure that your response is accurate and does not contain any false content."\
              "If the query cannot be answered using the provided search results, please state [Text Not Found in PDF.]"\
              "Please disregard any irrelevant search results and only include information that directly answers the question."\
              "Your response should be step-by-step and easy to understand."\
              "Good luck!"


    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text(openAI_key, prompt, "text-davinci-003")
    return answer


def question_answer(url, file, question, openAI_key):
    openAI_key = os.environ.get('OPENAI_KEY')
    if url.strip() == '' and file == None:
        return '[ERROR]: Both URL and PDF is empty. Provide atleast one.'

    if url.strip() != '' and file != None:
        return '[ERROR]: Both URL and PDF is provided. Please provide only one (eiter URL or PDF).'

    if url.strip() != '':
        glob_url = url
        download_pdf(glob_url, 'corpus.pdf')
        load_recommender('corpus.pdf')

    else:
        old_file_name = file.name
        file_name = file.name
        file_name = file_name[:-12] + file_name[-4:]

        # Rename the file
        os.rename(old_file_name, file_name)
        load_recommender(file_name)

        # Delete the existing file if it exists
        if os.path.exists(file_name):
            os.remove(file_name)

    if question.strip() == '':
        return '[ERROR]: Question field is empty'

    return generate_answer(question, openAI_key)


recommender = SemanticSearch()

title = 'ChatToFiles'
description = """ ChatToFiles is a cutting-edge tool that facilitates conversation with PDF files utilizing Universal Sentence Encoder and Open AI technology. This tool is particularly advantageous as it delivers more reliable responses than other comparable tools, thanks to its superior embeddings, which eliminate hallucination errors. Additionally, when providing answers, PDF GPT can cite the exact page number where the relevant information is located within the PDF file, which enhances the credibility of the responses and expedites the process of finding pertinent information."""

with gr.Blocks() as iface:

    gr.Markdown(f'<center><h1>{title}</h1></center>')
    gr.Markdown(description)

    with gr.Row():

        with gr.Group():
            url = gr.Textbox(label='Enter PDF URL here', placeholder='https://docs.pdf')
            gr.Markdown(
                "<center><h4>----------------------------------------------------------------------------------------------------------------------------------------------------<h4></center>")
            file = gr.File(label='Drop PDF here', file_types=['*'])
            question = gr.Textbox(
                label='Enter your question here', placeholder='Type your question here')
            btn = gr.Button(value='Submit')
            btn.style(full_width=True)

            with gr.Group():
                answer = gr.Textbox(label='The answer to your question is :',
                                    lines=5, placeholder='Your answer here...')

        btn.click(question_answer, inputs=[
                  url, file, question], outputs=[answer])
# openai.api_key = os.getenv('Your_Key_Here')
dotenv.load_dotenv()
iface.launch()
# iface.launch(share=True)