Spaces:
Build error
Build error
File size: 8,159 Bytes
8cf0eef d1f0692 8cf0eef 06fd46f 8cf0eef 06fd46f 8cf0eef 06fd46f 8cf0eef 06fd46f 8cf0eef 06fd46f 8cf0eef 06fd46f 8cf0eef 06fd46f 8cf0eef 06fd46f 8cf0eef 06fd46f 8cf0eef 06fd46f 8cf0eef 06fd46f 8cf0eef b2b9ba7 8cf0eef 06fd46f 8cf0eef 06fd46f b2b9ba7 06fd46f 8cf0eef 06fd46f 8cf0eef 06fd46f d1f0692 8cf0eef 06fd46f 8cf0eef 06fd46f 8cf0eef 06fd46f 8cf0eef 1f5e0a5 06fd46f 8cf0eef eef2fe1 8cf0eef 06fd46f 8cf0eef 06fd46f b2b9ba7 06fd46f 8cf0eef 8910ed8 06fd46f d1f0692 06fd46f d1f0692 06fd46f d1f0692 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
import dotenv
from sklearn.neighbors import NearestNeighbors
def download_pdf(url, output_path):
urllib.request.urlretrieve(url, output_path)
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
for i in range(start_page-1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(' ') for t in texts]
page_nums = []
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i:i+word_length]
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
len(text_toks) != (idx+1)):
text_toks[idx+1] = chunk + text_toks[idx+1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
chunks.append(chunk)
return chunks
class SemanticSearch:
def __init__(self):
self.use = hub.load(
'https://tfhub.dev/google/universal-sentence-encoder/4')
self.fitted = False
def fit(self, data, batch=1000, n_neighbors=5):
self.data = data
self.embeddings = self.get_text_embedding(data, batch=batch)
n_neighbors = min(n_neighbors, len(self.embeddings))
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
self.nn.fit(self.embeddings)
self.fitted = True
def __call__(self, text, return_data=True):
inp_emb = self.use([text])
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
if return_data:
return [self.data[i] for i in neighbors]
else:
return neighbors
def get_text_embedding(self, texts, batch=1000):
embeddings = []
for i in range(0, len(texts), batch):
text_batch = texts[i:(i+batch)]
emb_batch = self.use(text_batch)
embeddings.append(emb_batch)
embeddings = np.vstack(embeddings)
return embeddings
def load_recommender(path, start_page=1):
global recommender
texts = pdf_to_text(path, start_page=start_page)
chunks = text_to_chunks(texts, start_page=start_page)
recommender.fit(chunks)
return 'Corpus Loaded.'
def generate_text(openAI_key, prompt, engine="text-davinci-003"):
openai.api_key = openAI_key
completions = openai.Completion.create(
engine=engine,
prompt=prompt,
max_tokens=512,
n=1,
stop=None,
temperature=1,
)
message = completions.choices[0].text
return message
def generate_answer(question, openAI_key):
topn_chunks = recommender(question)
prompt = ""
prompt += 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given."\
"Cite each reference using [ Page Number] notation (every result has this number at the beginning)."\
"Citation should be done at the end of each sentence."\
"If the search results mention multiple subjects with the same name, create separate answers for each."\
"Only include information found in the results and don't add any additional information."\
"Make sure the answer is correct and don't output false content."\
"If the text does not relate to the query, simply state 'Text Not Found in PDF'."\
"Ignore outlier search results which have nothing to do with the question."\
"Only answer what is asked."\
"The answer should be short and concise."\
"Answer step-by-step."\
"To answer the query, please follow these instructions:"\
"Please carefully read through the search results provided and compose a clear and concise response."\
"When citing information from the search results, please include the page number in square brackets after the relevant text."\
"If the search results mention multiple subjects with the same name, create separate answers for each."\
"Only include information found in the search results and avoid adding any additional information."\
"Be sure that your response is accurate and does not contain any false content."\
"If the query cannot be answered using the provided search results, please state [Text Not Found in PDF.]"\
"Please disregard any irrelevant search results and only include information that directly answers the question."\
"Your response should be step-by-step and easy to understand."\
"Good luck!"
prompt += f"Query: {question}\nAnswer:"
answer = generate_text(openAI_key, prompt, "text-davinci-003")
return answer
def question_answer(url, file, question, openAI_key):
openAI_key = os.environ.get('OPENAI_KEY')
if url.strip() == '' and file == None:
return '[ERROR]: Both URL and PDF is empty. Provide atleast one.'
if url.strip() != '' and file != None:
return '[ERROR]: Both URL and PDF is provided. Please provide only one (eiter URL or PDF).'
if url.strip() != '':
glob_url = url
download_pdf(glob_url, 'corpus.pdf')
load_recommender('corpus.pdf')
else:
old_file_name = file.name
file_name = file.name
file_name = file_name[:-12] + file_name[-4:]
# Rename the file
os.rename(old_file_name, file_name)
load_recommender(file_name)
# Delete the existing file if it exists
if os.path.exists(file_name):
os.remove(file_name)
if question.strip() == '':
return '[ERROR]: Question field is empty'
return generate_answer(question, openAI_key)
recommender = SemanticSearch()
title = 'ChatToFiles'
description = """ ChatToFiles is a cutting-edge tool that facilitates conversation with PDF files utilizing Universal Sentence Encoder and Open AI technology. This tool is particularly advantageous as it delivers more reliable responses than other comparable tools, thanks to its superior embeddings, which eliminate hallucination errors. Additionally, when providing answers, PDF GPT can cite the exact page number where the relevant information is located within the PDF file, which enhances the credibility of the responses and expedites the process of finding pertinent information."""
with gr.Blocks() as iface:
gr.Markdown(f'<center><h1>{title}</h1></center>')
gr.Markdown(description)
with gr.Row():
with gr.Group():
url = gr.Textbox(label='Enter PDF URL here', placeholder='https://docs.pdf')
gr.Markdown(
"<center><h4>----------------------------------------------------------------------------------------------------------------------------------------------------<h4></center>")
file = gr.File(label='Drop PDF here', file_types=['*'])
question = gr.Textbox(
label='Enter your question here', placeholder='Type your question here')
btn = gr.Button(value='Submit')
btn.style(full_width=True)
with gr.Group():
answer = gr.Textbox(label='The answer to your question is :',
lines=5, placeholder='Your answer here...')
btn.click(question_answer, inputs=[
url, file, question], outputs=[answer])
# openai.api_key = os.getenv('Your_Key_Here')
dotenv.load_dotenv()
iface.launch()
# iface.launch(share=True) |