victor's picture
victor HF Staff
Revert "Use Gradio Examples component with image thumbnails"
ef880bf
import os
import torch
import numpy as np
from PIL import Image
import spaces
from transformers import AutoProcessor
from qwen_vl_utils import process_vision_info
from transformers import HunYuanVLForConditionalGeneration
import gradio as gr
from argparse import ArgumentParser
import copy
import requests
from io import BytesIO
import tempfile
import hashlib
import gc
# Optimization: Set environment variables
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = '1'
# torch._C._jit_set_profiling_executor(False)
# torch._C._jit_set_profiling_mode(False)
def _get_args():
parser = ArgumentParser()
parser.add_argument('-c',
'--checkpoint-path',
type=str,
default='tencent/HunyuanOCR',
help='Checkpoint name or path, default to %(default)r')
parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')
parser.add_argument('--flash-attn2',
action='store_true',
default=False,
help='Enable flash_attention_2 when loading the model.')
parser.add_argument('--share',
action='store_true',
default=False,
help='Create a publicly shareable link for the interface.')
parser.add_argument('--inbrowser',
action='store_true',
default=False,
help='Automatically launch the interface in a new tab on the default browser.')
args = parser.parse_args()
return args
def _load_model_processor(args):
# ZeroGPU: Model loads on CPU, uses eager mode
# Automatically moves to GPU within @spaces.GPU decorator
print(f"[INFO] Loading model (ZeroGPU uses eager mode)")
print(f"[INFO] CUDA available at load time: {torch.cuda.is_available()}")
model = HunYuanVLForConditionalGeneration.from_pretrained(
args.checkpoint_path,
attn_implementation="eager", # Required for ZeroGPU (starts on CPU)
torch_dtype=torch.bfloat16,
device_map="auto", # Let ZeroGPU manage device placement
)
# Disable gradient checkpointing for faster inference
if hasattr(model, 'gradient_checkpointing_disable'):
model.gradient_checkpointing_disable()
print(f"[INFO] Gradient checkpointing disabled")
# Set to evaluation mode
model.eval()
print(f"[INFO] Model set to eval mode")
processor = AutoProcessor.from_pretrained(args.checkpoint_path, use_fast=False, trust_remote_code=True)
print(f"[INFO] Model loaded, device: {next(model.parameters()).device}")
return model, processor
def _parse_text(text):
"""Parse text, handle special formatting"""
# if text is None:
# return text
text = text.replace("<trans>", "").replace("</trans>", "")
return text
def _remove_image_special(text):
"""Remove image special tokens"""
# if text is None:
# return text
# # Remove image special tokens
# import re
# text = re.sub(r'<image>|</image>|<img>|</img>', '', text)
# return text
return text
def _gc():
"""Garbage collection"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def clean_repeated_substrings(text):
"""Clean repeated substrings in text"""
n = len(text)
if n < 2000:
return text
for length in range(2, n // 10 + 1):
candidate = text[-length:]
count = 0
i = n - length
while i >= 0 and text[i:i + length] == candidate:
count += 1
i -= length
if count >= 10:
return text[:n - length * (count - 1)]
return text
def _launch_demo(args, model, processor):
# Track first call
first_call = [True]
# Uses closure to access model and processor
# Duration increased to 120s to avoid timeout during peak hours
@spaces.GPU(duration=120)
def call_local_model(messages):
import time
import sys
start_time = time.time()
if first_call[0]:
print(f"[INFO] ========== First inference call ==========")
first_call[0] = False
else:
print(f"[INFO] ========== Subsequent inference call ==========")
print(f"[DEBUG] ========== Starting inference ==========")
print(f"[DEBUG] Python version: {sys.version}")
print(f"[DEBUG] PyTorch version: {torch.__version__}")
print(f"[DEBUG] CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"[DEBUG] CUDA device count: {torch.cuda.device_count()}")
print(f"[DEBUG] Current CUDA device: {torch.cuda.current_device()}")
print(f"[DEBUG] Device name: {torch.cuda.get_device_name(0)}")
print(f"[DEBUG] GPU Memory allocated: {torch.cuda.memory_allocated(0) / 1024**3:.2f} GB")
print(f"[DEBUG] GPU Memory reserved: {torch.cuda.memory_reserved(0) / 1024**3:.2f} GB")
# Ensure model is on GPU
model_device = next(model.parameters()).device
print(f"[DEBUG] Model device: {model_device}")
print(f"[DEBUG] Model dtype: {next(model.parameters()).dtype}")
if str(model_device) == 'cpu':
print(f"[ERROR] Model on CPU! Attempting to move to GPU...")
if torch.cuda.is_available():
move_start = time.time()
model.cuda()
move_time = time.time() - move_start
print(f"[DEBUG] Model device after cuda(): {next(model.parameters()).device}")
print(f"[DEBUG] Model moved to GPU in: {move_time:.2f}s")
else:
print(f"[CRITICAL] CUDA unavailable! Running on CPU will be slow!")
print(f"[CRITICAL] This may be due to ZeroGPU resource constraints")
else:
print(f"[INFO] Model already on GPU: {model_device}")
messages = [messages]
# Build input using processor
texts = [
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
for msg in messages
]
print(f"[DEBUG] Template built, elapsed: {time.time() - start_time:.2f}s")
image_inputs, video_inputs = process_vision_info(messages)
print(f"[DEBUG] Image processing done, elapsed: {time.time() - start_time:.2f}s")
# Check image input size
if image_inputs:
for idx, img in enumerate(image_inputs):
if hasattr(img, 'size'):
print(f"[DEBUG] Image {idx} size: {img.size}")
elif isinstance(img, np.ndarray):
print(f"[DEBUG] Image {idx} shape: {img.shape}")
print(f"[DEBUG] Starting processor encoding...")
processor_start = time.time()
inputs = processor(
text=texts,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
print(f"[DEBUG] Processor encoding done, elapsed: {time.time() - processor_start:.2f}s")
# Ensure inputs on GPU
to_device_start = time.time()
inputs = inputs.to('cuda' if torch.cuda.is_available() else 'cpu')
print(f"[DEBUG] Inputs moved to device, elapsed: {time.time() - to_device_start:.2f}s")
print(f"[DEBUG] Input preparation done, total elapsed: {time.time() - start_time:.2f}s")
print(f"[DEBUG] Input IDs shape: {inputs.input_ids.shape}")
print(f"[DEBUG] Input device: {inputs.input_ids.device}")
print(f"[DEBUG] Input sequence length: {inputs.input_ids.shape[1]}")
# Generation
gen_start = time.time()
print(f"[DEBUG] ========== Starting token generation ==========")
# Optimized max_new_tokens for OCR tasks
max_new_tokens = 2048
print(f"[DEBUG] max_new_tokens: {max_new_tokens}")
# Progress callback
token_count = [0]
last_time = [gen_start]
def progress_callback(input_ids, scores, **kwargs):
token_count[0] += 1
current_time = time.time()
if token_count[0] % 10 == 0 or (current_time - last_time[0]) > 2.0:
elapsed = current_time - gen_start
tokens_per_sec = token_count[0] / elapsed if elapsed > 0 else 0
print(f"[DEBUG] Generated {token_count[0]} tokens, speed: {tokens_per_sec:.2f} tokens/s, elapsed: {elapsed:.2f}s")
last_time[0] = current_time
return False
with torch.no_grad():
print(f"[DEBUG] Entered torch.no_grad() context, elapsed: {time.time() - start_time:.2f}s")
# Test forward pass
print(f"[DEBUG] Testing forward pass...")
forward_test_start = time.time()
try:
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
test_outputs = model(**inputs, use_cache=False)
print(f"[DEBUG] Forward pass test successful, elapsed: {time.time() - forward_test_start:.2f}s")
except Exception as e:
print(f"[WARNING] Forward pass test failed: {e}")
print(f"[DEBUG] Starting model.generate()... (elapsed: {time.time() - start_time:.2f}s)")
generate_call_start = time.time()
try:
# Deterministic generation
generated_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False,
temperature=0
)
print(f"[DEBUG] model.generate() returned, elapsed: {time.time() - generate_call_start:.2f}s")
except Exception as e:
print(f"[ERROR] Generation failed: {e}")
import traceback
traceback.print_exc()
raise
print(f"[DEBUG] Exited torch.no_grad() context")
gen_time = time.time() - gen_start
print(f"[DEBUG] ========== Generation complete ==========")
print(f"[DEBUG] Generation time: {gen_time:.2f}s")
print(f"[DEBUG] Output shape: {generated_ids.shape}")
# Decode output
if "input_ids" in inputs:
input_ids = inputs.input_ids
else:
input_ids = inputs.inputs
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(input_ids, generated_ids)
]
actual_tokens = len(generated_ids_trimmed[0])
print(f"[DEBUG] Actual tokens generated: {actual_tokens}")
print(f"[DEBUG] Time per token: {gen_time/actual_tokens if actual_tokens > 0 else 0:.3f}s")
output_texts = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
total_time = time.time() - start_time
print(f"[DEBUG] ========== All done ==========")
print(f"[DEBUG] Total time: {total_time:.2f}s")
print(f"[DEBUG] Output length: {len(output_texts[0])} chars")
print(f"[DEBUG] Output preview: {output_texts[0][:100]}...")
output_texts[0] = clean_repeated_substrings(output_texts[0])
return output_texts
def create_predict_fn():
def predict(_chatbot, task_history):
nonlocal model, processor
chat_query = _chatbot[-1][0]
query = task_history[-1][0]
if len(chat_query) == 0:
_chatbot.pop()
task_history.pop()
return _chatbot
print('User: ', query)
history_cp = copy.deepcopy(task_history)
full_response = ''
messages = []
content = []
for q, a in history_cp:
if isinstance(q, (tuple, list)):
# Check if URL or local path
img_path = q[0]
if img_path.startswith(('http://', 'https://')):
content.append({'type': 'image', 'image': img_path})
else:
content.append({'type': 'image', 'image': f'{os.path.abspath(img_path)}'})
else:
content.append({'type': 'text', 'text': q})
messages.append({'role': 'user', 'content': content})
messages.append({'role': 'assistant', 'content': [{'type': 'text', 'text': a}]})
content = []
messages.pop()
# Call model to get response
response_list = call_local_model(messages)
response = response_list[0] if response_list else ""
_chatbot[-1] = (_parse_text(chat_query), _remove_image_special(_parse_text(response)))
full_response = _parse_text(response)
task_history[-1] = (query, full_response)
print('HunyuanOCR: ' + _parse_text(full_response))
yield _chatbot
return predict
def create_regenerate_fn():
def regenerate(_chatbot, task_history):
nonlocal model, processor
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
# Use outer predict function
_chatbot_gen = predict(_chatbot, task_history)
for _chatbot in _chatbot_gen:
yield _chatbot
return regenerate
predict = create_predict_fn()
regenerate = create_regenerate_fn()
def add_text(history, task_history, text):
task_text = text
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ''
def add_file(history, task_history, file):
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def download_url_image(url):
"""Download URL image to local temp file"""
try:
# Use URL hash as filename to avoid duplicate downloads
url_hash = hashlib.md5(url.encode()).hexdigest()
temp_dir = tempfile.gettempdir()
temp_path = os.path.join(temp_dir, f"hyocr_demo_{url_hash}.png")
# Return cached file if exists
if os.path.exists(temp_path):
return temp_path
# Download image
response = requests.get(url, timeout=10)
response.raise_for_status()
with open(temp_path, 'wb') as f:
f.write(response.content)
return temp_path
except Exception as e:
print(f"Failed to download image: {url}, error: {e}")
return url # Return original URL on failure
def reset_user_input():
return gr.update(value='')
def reset_state(_chatbot, task_history):
task_history.clear()
_chatbot.clear()
_gc()
return []
# Example image paths - local files
EXAMPLE_IMAGES = {
"spotting": "examples/spotting.jpg",
"parsing": "examples/parsing.jpg",
"ie": "examples/ie.jpg",
"vqa": "examples/vqa.jpg",
"translation": "examples/translation.jpg"
}
with gr.Blocks() as demo:
# Header
gr.Markdown("# HunyuanOCR\n*Powered by Tencent Hunyuan Team*")
with gr.Column():
# Chat area
chatbot = gr.Chatbot(
label='Chat',
height=600,
bubble_full_width=False,
layout="bubble",
show_copy_button=True,
)
# Input panel
with gr.Group():
query = gr.Textbox(
lines=2,
label='Enter your question',
placeholder='Upload an image first, then enter your question. Example: Detect and recognize text in this image.',
show_label=False
)
with gr.Row():
addfile_btn = gr.UploadButton('Upload Image', file_types=['image'])
submit_btn = gr.Button('Send', variant="primary", scale=3)
regen_btn = gr.Button('Regenerate')
empty_bin = gr.Button('Clear')
# Examples section
gr.Markdown("### Quick Examples - Click to load")
with gr.Row():
example_1_btn = gr.Button("Text Detection")
example_2_btn = gr.Button("Document Parsing")
example_3_btn = gr.Button("Info Extraction")
example_4_btn = gr.Button("Visual Q&A")
example_5_btn = gr.Button("Translation")
task_history = gr.State([])
# Example 1: Text Detection
def load_example_1(history, task_hist):
prompt = "Detect and recognize all text in this image. Output the text with bounding box coordinates."
image_path = EXAMPLE_IMAGES["spotting"]
history = [((image_path,), None)]
task_hist = [((image_path,), None)]
return history, task_hist, prompt
# Example 2: Document Parsing
def load_example_2(history, task_hist):
prompt = "Extract all text from this document in markdown format. Use HTML for tables and LaTeX for equations. Parse in reading order."
image_path = EXAMPLE_IMAGES["parsing"]
history = [((image_path,), None)]
task_hist = [((image_path,), None)]
return history, task_hist, prompt
# Example 3: Information Extraction
def load_example_3(history, task_hist):
prompt = "Extract the following fields from this receipt and return as JSON: ['total', 'subtotal', 'tax', 'date', 'items']"
image_path = EXAMPLE_IMAGES["ie"]
history = [((image_path,), None)]
task_hist = [((image_path,), None)]
return history, task_hist, prompt
# Example 4: Visual Q&A
def load_example_4(history, task_hist):
prompt = "Look at this chart and answer: Which quarter had the highest revenue? What was the Sales value in Q4?"
image_path = EXAMPLE_IMAGES["vqa"]
history = [((image_path,), None)]
task_hist = [((image_path,), None)]
return history, task_hist, prompt
# Example 5: Translation
def load_example_5(history, task_hist):
prompt = "Translate all text in this image to English."
image_path = EXAMPLE_IMAGES["translation"]
history = [((image_path,), None)]
task_hist = [((image_path,), None)]
return history, task_hist, prompt
# Bind events
example_1_btn.click(load_example_1, [chatbot, task_history], [chatbot, task_history, query])
example_2_btn.click(load_example_2, [chatbot, task_history], [chatbot, task_history, query])
example_3_btn.click(load_example_3, [chatbot, task_history], [chatbot, task_history, query])
example_4_btn.click(load_example_4, [chatbot, task_history], [chatbot, task_history, query])
example_5_btn.click(load_example_5, [chatbot, task_history], [chatbot, task_history, query])
submit_btn.click(add_text, [chatbot, task_history, query],
[chatbot, task_history]).then(predict, [chatbot, task_history], [chatbot], show_progress=True)
submit_btn.click(reset_user_input, [], [query])
empty_bin.click(reset_state, [chatbot, task_history], [chatbot], show_progress=True)
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)
# Feature descriptions
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
### Core Features
- **Text Detection & Recognition** - Multi-scene text detection and recognition
- **Document Parsing** - Automatic document structure recognition
- **Information Extraction** - Extract structured data from receipts and forms
- **Visual Q&A** - Text-centric open-ended question answering
- **Translation** - Translate text in images across 14+ languages
""")
with gr.Column(scale=1):
gr.Markdown("""
### Usage Tips
- **Inference** - For production, use VLLM for better performance
- **Image Quality** - Ensure images are clear, well-lit, and not heavily skewed
- **File Size** - Recommended max 10MB per image, JPG/PNG format
- **Use Cases** - OCR, document digitization, receipt recognition, translation
""")
# Footer
gr.Markdown("---\n*2025 Tencent Hunyuan Team. For research and educational use.*")
demo.queue().launch(
share=args.share,
inbrowser=args.inbrowser,
# server_port=args.server_port,
# server_name=args.server_name,
)
def main():
args = _get_args()
model, processor = _load_model_processor(args)
_launch_demo(args, model, processor)
if __name__ == '__main__':
main()