Spaces:
Running
Running
init commit
Browse files- app.py +652 -0
- requirements.txt +12 -0
app.py
ADDED
|
@@ -0,0 +1,652 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers import AutoProcessor
|
| 6 |
+
from qwen_vl_utils import process_vision_info # 请确保该模块在你的环境可用
|
| 7 |
+
from transformers import HunYuanVLForConditionalGeneration
|
| 8 |
+
import gradio as gr
|
| 9 |
+
from argparse import ArgumentParser
|
| 10 |
+
import copy
|
| 11 |
+
import requests
|
| 12 |
+
from io import BytesIO
|
| 13 |
+
import tempfile
|
| 14 |
+
import hashlib
|
| 15 |
+
import gc
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def _get_args():
|
| 21 |
+
parser = ArgumentParser()
|
| 22 |
+
|
| 23 |
+
parser.add_argument('-c',
|
| 24 |
+
'--checkpoint-path',
|
| 25 |
+
type=str,
|
| 26 |
+
default='tencent/HunyuanOCR',
|
| 27 |
+
help='Checkpoint name or path, default to %(default)r')
|
| 28 |
+
parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')
|
| 29 |
+
|
| 30 |
+
parser.add_argument('--flash-attn2',
|
| 31 |
+
action='store_true',
|
| 32 |
+
default=False,
|
| 33 |
+
help='Enable flash_attention_2 when loading the model.')
|
| 34 |
+
parser.add_argument('--share',
|
| 35 |
+
action='store_true',
|
| 36 |
+
default=False,
|
| 37 |
+
help='Create a publicly shareable link for the interface.')
|
| 38 |
+
parser.add_argument('--inbrowser',
|
| 39 |
+
action='store_true',
|
| 40 |
+
default=False,
|
| 41 |
+
help='Automatically launch the interface in a new tab on the default browser.')
|
| 42 |
+
# parser.add_argument('--server-port', type=int, default=8080, help='Demo server port.')
|
| 43 |
+
# parser.add_argument('--server-name', type=str, default='29.210.129.176', help='Demo server name.')
|
| 44 |
+
|
| 45 |
+
args = parser.parse_args()
|
| 46 |
+
return args
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def _load_model_processor(args):
|
| 50 |
+
model = HunYuanVLForConditionalGeneration.from_pretrained(
|
| 51 |
+
args.checkpoint_path,
|
| 52 |
+
attn_implementation="eager", # "flash_attention_2", #也可以是 flash_attention_2 或 sdpa,根据你的环境支持情况选择
|
| 53 |
+
torch_dtype=torch.bfloat16,
|
| 54 |
+
device_map="auto",
|
| 55 |
+
token=os.environ.get('HF_TOKEN')
|
| 56 |
+
)
|
| 57 |
+
processor = AutoProcessor.from_pretrained(args.checkpoint_path, use_fast=False, trust_remote_code=True)
|
| 58 |
+
return model, processor
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def _parse_text(text):
|
| 62 |
+
"""解析文本,处理特殊格式"""
|
| 63 |
+
# if text is None:
|
| 64 |
+
# return text
|
| 65 |
+
text = text.replace("<trans>", "").replace("</trans>", "")
|
| 66 |
+
return text
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def _remove_image_special(text):
|
| 70 |
+
"""移除图像特殊标记"""
|
| 71 |
+
# if text is None:
|
| 72 |
+
# return text
|
| 73 |
+
# # 移除可能的图像特殊标记
|
| 74 |
+
# import re
|
| 75 |
+
# text = re.sub(r'<image>|</image>|<img>|</img>', '', text)
|
| 76 |
+
# return text
|
| 77 |
+
return text
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def _gc():
|
| 81 |
+
"""垃圾回收"""
|
| 82 |
+
gc.collect()
|
| 83 |
+
if torch.cuda.is_available():
|
| 84 |
+
torch.cuda.empty_cache()
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def _launch_demo(args, model, processor):
|
| 88 |
+
def call_local_model(model, processor, messages):
|
| 89 |
+
print(messages)
|
| 90 |
+
messages = [messages]
|
| 91 |
+
# 使用 processor 构造输入格式
|
| 92 |
+
texts = [
|
| 93 |
+
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
|
| 94 |
+
for msg in messages
|
| 95 |
+
]
|
| 96 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 97 |
+
inputs = processor(
|
| 98 |
+
text=texts,
|
| 99 |
+
images=image_inputs,
|
| 100 |
+
videos=video_inputs,
|
| 101 |
+
padding=True,
|
| 102 |
+
return_tensors="pt",
|
| 103 |
+
)
|
| 104 |
+
inputs = inputs.to(model.device)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# gen_kwargs = {'max_new_tokens': 32768, 'streamer': streamer, **inputs}
|
| 108 |
+
# thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 109 |
+
# thread.start()
|
| 110 |
+
|
| 111 |
+
# generated_text = ''
|
| 112 |
+
# for new_text in streamer:
|
| 113 |
+
# generated_text += new_text
|
| 114 |
+
# yield generated_text
|
| 115 |
+
|
| 116 |
+
# 模型推理
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
generated_ids = model.generate(
|
| 119 |
+
**inputs,
|
| 120 |
+
max_new_tokens=1024*8,
|
| 121 |
+
repetition_penalty=1.03,
|
| 122 |
+
do_sample=False
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# 解码输出
|
| 126 |
+
if "input_ids" in inputs:
|
| 127 |
+
input_ids = inputs.input_ids
|
| 128 |
+
else:
|
| 129 |
+
input_ids = inputs.inputs # fallback
|
| 130 |
+
|
| 131 |
+
generated_ids_trimmed = [
|
| 132 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(input_ids, generated_ids)
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
output_texts = processor.batch_decode(
|
| 136 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
return output_texts
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def create_predict_fn():
|
| 143 |
+
|
| 144 |
+
def predict(_chatbot, task_history):
|
| 145 |
+
nonlocal model, processor
|
| 146 |
+
chat_query = _chatbot[-1][0]
|
| 147 |
+
query = task_history[-1][0]
|
| 148 |
+
if len(chat_query) == 0:
|
| 149 |
+
_chatbot.pop()
|
| 150 |
+
task_history.pop()
|
| 151 |
+
return _chatbot
|
| 152 |
+
print('User: ', query)
|
| 153 |
+
history_cp = copy.deepcopy(task_history)
|
| 154 |
+
full_response = ''
|
| 155 |
+
messages = []
|
| 156 |
+
content = []
|
| 157 |
+
for q, a in history_cp:
|
| 158 |
+
if isinstance(q, (tuple, list)):
|
| 159 |
+
# 判断是URL还是本地路径
|
| 160 |
+
img_path = q[0]
|
| 161 |
+
if img_path.startswith(('http://', 'https://')):
|
| 162 |
+
content.append({'type': 'image', 'image': img_path})
|
| 163 |
+
else:
|
| 164 |
+
content.append({'type': 'image', 'image': f'{os.path.abspath(img_path)}'})
|
| 165 |
+
else:
|
| 166 |
+
content.append({'type': 'text', 'text': q})
|
| 167 |
+
messages.append({'role': 'user', 'content': content})
|
| 168 |
+
messages.append({'role': 'assistant', 'content': [{'type': 'text', 'text': a}]})
|
| 169 |
+
content = []
|
| 170 |
+
messages.pop()
|
| 171 |
+
|
| 172 |
+
# 调用模型获取响应
|
| 173 |
+
response_list = call_local_model(model, processor, messages)
|
| 174 |
+
response = response_list[0] if response_list else ""
|
| 175 |
+
|
| 176 |
+
_chatbot[-1] = (_parse_text(chat_query), _remove_image_special(_parse_text(response)))
|
| 177 |
+
full_response = _parse_text(response)
|
| 178 |
+
|
| 179 |
+
task_history[-1] = (query, full_response)
|
| 180 |
+
print('HunyuanOCR: ' + _parse_text(full_response))
|
| 181 |
+
yield _chatbot
|
| 182 |
+
|
| 183 |
+
return predict
|
| 184 |
+
|
| 185 |
+
def create_regenerate_fn():
|
| 186 |
+
|
| 187 |
+
def regenerate(_chatbot, task_history):
|
| 188 |
+
nonlocal model, processor
|
| 189 |
+
if not task_history:
|
| 190 |
+
return _chatbot
|
| 191 |
+
item = task_history[-1]
|
| 192 |
+
if item[1] is None:
|
| 193 |
+
return _chatbot
|
| 194 |
+
task_history[-1] = (item[0], None)
|
| 195 |
+
chatbot_item = _chatbot.pop(-1)
|
| 196 |
+
if chatbot_item[0] is None:
|
| 197 |
+
_chatbot[-1] = (_chatbot[-1][0], None)
|
| 198 |
+
else:
|
| 199 |
+
_chatbot.append((chatbot_item[0], None))
|
| 200 |
+
# 使用外层的predict函数
|
| 201 |
+
_chatbot_gen = predict(_chatbot, task_history)
|
| 202 |
+
for _chatbot in _chatbot_gen:
|
| 203 |
+
yield _chatbot
|
| 204 |
+
|
| 205 |
+
return regenerate
|
| 206 |
+
|
| 207 |
+
predict = create_predict_fn()
|
| 208 |
+
regenerate = create_regenerate_fn()
|
| 209 |
+
|
| 210 |
+
def add_text(history, task_history, text):
|
| 211 |
+
task_text = text
|
| 212 |
+
history = history if history is not None else []
|
| 213 |
+
task_history = task_history if task_history is not None else []
|
| 214 |
+
history = history + [(_parse_text(text), None)]
|
| 215 |
+
task_history = task_history + [(task_text, None)]
|
| 216 |
+
return history, task_history, ''
|
| 217 |
+
|
| 218 |
+
def add_file(history, task_history, file):
|
| 219 |
+
history = history if history is not None else []
|
| 220 |
+
task_history = task_history if task_history is not None else []
|
| 221 |
+
history = history + [((file.name,), None)]
|
| 222 |
+
task_history = task_history + [((file.name,), None)]
|
| 223 |
+
return history, task_history
|
| 224 |
+
|
| 225 |
+
def download_url_image(url):
|
| 226 |
+
"""下载 URL 图片到本地临时文件"""
|
| 227 |
+
try:
|
| 228 |
+
# 使用 URL 的哈希值作为文件名,避免重复下载
|
| 229 |
+
url_hash = hashlib.md5(url.encode()).hexdigest()
|
| 230 |
+
temp_dir = tempfile.gettempdir()
|
| 231 |
+
temp_path = os.path.join(temp_dir, f"hyocr_demo_{url_hash}.jpg")
|
| 232 |
+
|
| 233 |
+
# 如果文件已存在,直接返回
|
| 234 |
+
if os.path.exists(temp_path):
|
| 235 |
+
return temp_path
|
| 236 |
+
|
| 237 |
+
# 下载图片
|
| 238 |
+
response = requests.get(url, timeout=10)
|
| 239 |
+
response.raise_for_status()
|
| 240 |
+
img = Image.open(BytesIO(response.content)).convert('RGB')
|
| 241 |
+
img.save(temp_path)
|
| 242 |
+
return temp_path
|
| 243 |
+
except Exception as e:
|
| 244 |
+
print(f"下载图片失败: {url}, 错误: {e}")
|
| 245 |
+
return url # 失败时返回原 URL
|
| 246 |
+
|
| 247 |
+
def reset_user_input():
|
| 248 |
+
return gr.update(value='')
|
| 249 |
+
|
| 250 |
+
def reset_state(_chatbot, task_history):
|
| 251 |
+
task_history.clear()
|
| 252 |
+
_chatbot.clear()
|
| 253 |
+
_gc()
|
| 254 |
+
return []
|
| 255 |
+
|
| 256 |
+
# 示例图片路径配置 - 请替换为实际图片路径
|
| 257 |
+
EXAMPLE_IMAGES = {
|
| 258 |
+
"spotting": "https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/23cc43af9376b948f3febaf4ce854a8a.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763452661%3B1794556721&q-key-time=1763452661%3B1794556721&q-header-list=host&q-url-param-list=&q-signature=f39c909f209d2b84e3de648e2842942ad5a47d7a", # TODO: 替换为场景文字示例图片路径
|
| 259 |
+
"parsing": "https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/c4997ebd1be9f7c3e002fabba8b46cb7.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763455327%3B1794559387&q-key-time=1763455327%3B1794559387&q-header-list=host&q-url-param-list=&q-signature=6a4c093087ab2c76bca363456b70831d1304bc67",
|
| 260 |
+
"ie": "https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/7c67c0f78e4423d51644a325da1f8e85.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763455327%3B1794559387&q-key-time=1763455327%3B1794559387&q-header-list=host&q-url-param-list=&q-signature=10aceb21db90dc61e843103f9316f975719ea84d",
|
| 261 |
+
"vqa": "https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/fea0865d1c70c53aaa2ab91cd0e787f5.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763455328%3B1794559388&q-key-time=1763455328%3B1794559388&q-header-list=host&q-url-param-list=&q-signature=09f62488e9fd33f09795de0faf9b855f95299466",
|
| 262 |
+
"translation": "https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/1bdacfd77c09f20ec8bc043933b815d6.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763455328%3B1794559388&q-key-time=1763455328%3B1794559388&q-header-list=host&q-url-param-list=&q-signature=c7214858ebd48824565cd21898a32d0464373009",
|
| 263 |
+
# "spotting": "examples/spotting.jpg",
|
| 264 |
+
# "parsing": "examples/parsing.jpg",
|
| 265 |
+
# "ie": "examples/ie.jpg",
|
| 266 |
+
# "vqa": "examples/vqa.jpg",
|
| 267 |
+
# "translation": "examples/translation.jpg"
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
with gr.Blocks(css="""
|
| 271 |
+
body {
|
| 272 |
+
background: #f5f7fa;
|
| 273 |
+
}
|
| 274 |
+
.gradio-container {
|
| 275 |
+
max-width: 100% !important;
|
| 276 |
+
padding: 0 40px !important;
|
| 277 |
+
}
|
| 278 |
+
.header-section {
|
| 279 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 280 |
+
padding: 30px 0;
|
| 281 |
+
margin: -20px -40px 30px -40px;
|
| 282 |
+
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
| 283 |
+
}
|
| 284 |
+
.header-content {
|
| 285 |
+
max-width: 1600px;
|
| 286 |
+
margin: 0 auto;
|
| 287 |
+
padding: 0 40px;
|
| 288 |
+
display: flex;
|
| 289 |
+
align-items: center;
|
| 290 |
+
gap: 20px;
|
| 291 |
+
}
|
| 292 |
+
.header-logo {
|
| 293 |
+
height: 60px;
|
| 294 |
+
}
|
| 295 |
+
.header-text h1 {
|
| 296 |
+
color: white;
|
| 297 |
+
font-size: 32px;
|
| 298 |
+
font-weight: bold;
|
| 299 |
+
margin: 0 0 5px 0;
|
| 300 |
+
}
|
| 301 |
+
.header-text p {
|
| 302 |
+
color: rgba(255,255,255,0.9);
|
| 303 |
+
margin: 0;
|
| 304 |
+
font-size: 14px;
|
| 305 |
+
}
|
| 306 |
+
.main-container {
|
| 307 |
+
max-width: 1800px;
|
| 308 |
+
margin: 0 auto;
|
| 309 |
+
}
|
| 310 |
+
.chatbot {
|
| 311 |
+
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08) !important;
|
| 312 |
+
border-radius: 12px !important;
|
| 313 |
+
border: 1px solid #e5e7eb !important;
|
| 314 |
+
background: white !important;
|
| 315 |
+
}
|
| 316 |
+
.input-panel {
|
| 317 |
+
background: white;
|
| 318 |
+
padding: 20px;
|
| 319 |
+
border-radius: 12px;
|
| 320 |
+
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);
|
| 321 |
+
border: 1px solid #e5e7eb;
|
| 322 |
+
}
|
| 323 |
+
.input-box textarea {
|
| 324 |
+
border: 2px solid #e5e7eb !important;
|
| 325 |
+
border-radius: 8px !important;
|
| 326 |
+
font-size: 14px !important;
|
| 327 |
+
}
|
| 328 |
+
.input-box textarea:focus {
|
| 329 |
+
border-color: #667eea !important;
|
| 330 |
+
}
|
| 331 |
+
.btn-primary {
|
| 332 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 333 |
+
border: none !important;
|
| 334 |
+
color: white !important;
|
| 335 |
+
font-weight: 500 !important;
|
| 336 |
+
padding: 10px 24px !important;
|
| 337 |
+
font-size: 14px !important;
|
| 338 |
+
}
|
| 339 |
+
.btn-primary:hover {
|
| 340 |
+
transform: translateY(-1px) !important;
|
| 341 |
+
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.4) !important;
|
| 342 |
+
}
|
| 343 |
+
.btn-secondary {
|
| 344 |
+
background: white !important;
|
| 345 |
+
border: 2px solid #667eea !important;
|
| 346 |
+
color: #667eea !important;
|
| 347 |
+
padding: 8px 20px !important;
|
| 348 |
+
font-size: 14px !important;
|
| 349 |
+
}
|
| 350 |
+
.btn-secondary:hover {
|
| 351 |
+
background: #f0f4ff !important;
|
| 352 |
+
}
|
| 353 |
+
.example-grid {
|
| 354 |
+
display: grid;
|
| 355 |
+
grid-template-columns: repeat(4, 1fr);
|
| 356 |
+
gap: 20px;
|
| 357 |
+
margin-top: 30px;
|
| 358 |
+
}
|
| 359 |
+
.example-card {
|
| 360 |
+
background: white;
|
| 361 |
+
border-radius: 12px;
|
| 362 |
+
overflow: hidden;
|
| 363 |
+
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);
|
| 364 |
+
border: 1px solid #e5e7eb;
|
| 365 |
+
transition: all 0.3s ease;
|
| 366 |
+
}
|
| 367 |
+
.example-card:hover {
|
| 368 |
+
transform: translateY(-4px);
|
| 369 |
+
box-shadow: 0 8px 20px rgba(102, 126, 234, 0.15);
|
| 370 |
+
border-color: #667eea;
|
| 371 |
+
}
|
| 372 |
+
.example-image-wrapper {
|
| 373 |
+
width: 100%;
|
| 374 |
+
height: 180px;
|
| 375 |
+
overflow: hidden;
|
| 376 |
+
background: #f5f7fa;
|
| 377 |
+
}
|
| 378 |
+
.example-image-wrapper img {
|
| 379 |
+
width: 100%;
|
| 380 |
+
height: 100%;
|
| 381 |
+
object-fit: cover;
|
| 382 |
+
}
|
| 383 |
+
.example-btn {
|
| 384 |
+
width: 100% !important;
|
| 385 |
+
white-space: pre-wrap !important;
|
| 386 |
+
text-align: left !important;
|
| 387 |
+
padding: 16px !important;
|
| 388 |
+
background: white !important;
|
| 389 |
+
border: none !important;
|
| 390 |
+
border-top: 1px solid #e5e7eb !important;
|
| 391 |
+
color: #1f2937 !important;
|
| 392 |
+
font-size: 14px !important;
|
| 393 |
+
line-height: 1.6 !important;
|
| 394 |
+
transition: all 0.3s ease !important;
|
| 395 |
+
font-weight: 500 !important;
|
| 396 |
+
}
|
| 397 |
+
.example-btn:hover {
|
| 398 |
+
background: #f9fafb !important;
|
| 399 |
+
color: #667eea !important;
|
| 400 |
+
}
|
| 401 |
+
.feature-section {
|
| 402 |
+
background: white;
|
| 403 |
+
padding: 24px;
|
| 404 |
+
border-radius: 12px;
|
| 405 |
+
margin-top: 30px;
|
| 406 |
+
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);
|
| 407 |
+
border: 1px solid #e5e7eb;
|
| 408 |
+
}
|
| 409 |
+
.section-title {
|
| 410 |
+
font-size: 18px;
|
| 411 |
+
font-weight: 600;
|
| 412 |
+
color: #1f2937;
|
| 413 |
+
margin-bottom: 20px;
|
| 414 |
+
padding-bottom: 12px;
|
| 415 |
+
border-bottom: 2px solid #e5e7eb;
|
| 416 |
+
}
|
| 417 |
+
""") as demo:
|
| 418 |
+
# 顶部导航栏
|
| 419 |
+
gr.HTML("""
|
| 420 |
+
<div class="header-section">
|
| 421 |
+
<div class="header-content">
|
| 422 |
+
<img src="https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/6ef6928b21b323b2b00115f86a779d8f.png?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763450355%3B1794554415&q-key-time=1763450355%3B1794554415&q-header-list=host&q-url-param-list=&q-signature=41328696dc34571324aa18c791c1196192e729c6" class="header-logo"/>
|
| 423 |
+
<div class="header-text">
|
| 424 |
+
<h1>HunyuanOCR</h1>
|
| 425 |
+
<p>Powered by Tencent Hunyuan Team</p>
|
| 426 |
+
</div>
|
| 427 |
+
</div>
|
| 428 |
+
</div>
|
| 429 |
+
""")
|
| 430 |
+
|
| 431 |
+
with gr.Column(elem_classes=["main-container"]):
|
| 432 |
+
# 对话区域 - 全宽
|
| 433 |
+
chatbot = gr.Chatbot(
|
| 434 |
+
label='💬 对话窗口',
|
| 435 |
+
height=600,
|
| 436 |
+
bubble_full_width=False,
|
| 437 |
+
layout="bubble",
|
| 438 |
+
show_copy_button=True,
|
| 439 |
+
avatar_images=(None, "https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/6ef6928b21b323b2b00115f86a779d8f.png?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763450355%3B1794554415&q-key-time=1763450355%3B1794554415&q-header-list=host&q-url-param-list=&q-signature=41328696dc34571324aa18c791c1196192e729c6"),
|
| 440 |
+
elem_classes=["chatbot"]
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
# 输入控制面板 - 全宽
|
| 444 |
+
with gr.Group(elem_classes=["input-panel"]):
|
| 445 |
+
query = gr.Textbox(
|
| 446 |
+
lines=2,
|
| 447 |
+
label='💭 输入您的问题',
|
| 448 |
+
placeholder='请先上传图片,然后输入问题。例如:检测并识别图片中的文字,将文本坐标格式化输出。',
|
| 449 |
+
elem_classes=["input-box"],
|
| 450 |
+
show_label=False
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
with gr.Row():
|
| 454 |
+
addfile_btn = gr.UploadButton('📁 上传图片', file_types=['image'], elem_classes=["btn-secondary"])
|
| 455 |
+
submit_btn = gr.Button('🚀 发送消息', variant="primary", elem_classes=["btn-primary"], scale=3)
|
| 456 |
+
regen_btn = gr.Button('🔄 重新生成', elem_classes=["btn-secondary"])
|
| 457 |
+
empty_bin = gr.Button('🗑️ 清空对话', elem_classes=["btn-secondary"])
|
| 458 |
+
|
| 459 |
+
# 示例区域 - 5列网格布局
|
| 460 |
+
gr.HTML('<div class="section-title">📚 快速体验示例 - 点击下方卡片快速加载</div>')
|
| 461 |
+
|
| 462 |
+
with gr.Row():
|
| 463 |
+
# 示例1:spotting
|
| 464 |
+
with gr.Column(scale=1):
|
| 465 |
+
with gr.Group(elem_classes=["example-card"]):
|
| 466 |
+
gr.HTML("""
|
| 467 |
+
<div class="example-image-wrapper">
|
| 468 |
+
<img src="https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/23cc43af9376b948f3febaf4ce854a8a.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763452661%3B1794556721&q-key-time=1763452661%3B1794556721&q-header-list=host&q-url-param-list=&q-signature=f39c909f209d2b84e3de648e2842942ad5a47d7a" alt="文字检测识别"/>
|
| 469 |
+
</div>
|
| 470 |
+
""")
|
| 471 |
+
example_1_btn = gr.Button("🔍 文字检测和识别", elem_classes=["example-btn"])
|
| 472 |
+
|
| 473 |
+
# 示例2:parsing
|
| 474 |
+
with gr.Column(scale=1):
|
| 475 |
+
with gr.Group(elem_classes=["example-card"]):
|
| 476 |
+
gr.HTML("""
|
| 477 |
+
<div class="example-image-wrapper">
|
| 478 |
+
<img src="https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/c4997ebd1be9f7c3e002fabba8b46cb7.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763455327%3B1794559387&q-key-time=1763455327%3B1794559387&q-header-list=host&q-url-param-list=&q-signature=6a4c093087ab2c76bca363456b70831d1304bc67" alt="文档解析"/>
|
| 479 |
+
</div>
|
| 480 |
+
""")
|
| 481 |
+
example_2_btn = gr.Button("📋 文档解析", elem_classes=["example-btn"])
|
| 482 |
+
|
| 483 |
+
# 示例3:ie
|
| 484 |
+
with gr.Column(scale=1):
|
| 485 |
+
with gr.Group(elem_classes=["example-card"]):
|
| 486 |
+
gr.HTML("""
|
| 487 |
+
<div class="example-image-wrapper">
|
| 488 |
+
<img src="https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/7c67c0f78e4423d51644a325da1f8e85.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763455327%3B1794559387&q-key-time=1763455327%3B1794559387&q-header-list=host&q-url-param-list=&q-signature=10aceb21db90dc61e843103f9316f975719ea84d" alt="信息抽取"/>
|
| 489 |
+
</div>
|
| 490 |
+
""")
|
| 491 |
+
example_3_btn = gr.Button("🎯 信息抽取", elem_classes=["example-btn"])
|
| 492 |
+
|
| 493 |
+
# 示例4:VQA
|
| 494 |
+
with gr.Column(scale=1):
|
| 495 |
+
with gr.Group(elem_classes=["example-card"]):
|
| 496 |
+
gr.HTML("""
|
| 497 |
+
<div class="example-image-wrapper">
|
| 498 |
+
<img src="https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/fea0865d1c70c53aaa2ab91cd0e787f5.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763455328%3B1794559388&q-key-time=1763455328%3B1794559388&q-header-list=host&q-url-param-list=&q-signature=09f62488e9fd33f09795de0faf9b855f95299466" alt="视觉问答"/>
|
| 499 |
+
</div>
|
| 500 |
+
""")
|
| 501 |
+
example_4_btn = gr.Button("💬 视觉问答", elem_classes=["example-btn"])
|
| 502 |
+
|
| 503 |
+
# 示例5:translation
|
| 504 |
+
with gr.Column(scale=1):
|
| 505 |
+
with gr.Group(elem_classes=["example-card"]):
|
| 506 |
+
gr.HTML("""
|
| 507 |
+
<div class="example-image-wrapper">
|
| 508 |
+
<img src="https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/1bdacfd77c09f20ec8bc043933b815d6.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763455328%3B1794559388&q-key-time=1763455328%3B1794559388&q-header-list=host&q-url-param-list=&q-signature=c7214858ebd48824565cd21898a32d0464373009" alt="图片翻译"/>
|
| 509 |
+
</div>
|
| 510 |
+
""")
|
| 511 |
+
example_5_btn = gr.Button("🌐 图片翻译", elem_classes=["example-btn"])
|
| 512 |
+
|
| 513 |
+
task_history = gr.State([])
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
# 示例1:文档识别
|
| 517 |
+
def load_example_1(history, task_hist):
|
| 518 |
+
prompt = "检测并识别图片中的文字,将文本坐标格式化输出。"
|
| 519 |
+
image_url = EXAMPLE_IMAGES["spotting"]
|
| 520 |
+
# 下载 URL 图片到本地
|
| 521 |
+
image_path = download_url_image(image_url)
|
| 522 |
+
# 清空对话历史
|
| 523 |
+
history = []
|
| 524 |
+
task_hist = []
|
| 525 |
+
history = history + [((image_path,), None)]
|
| 526 |
+
task_hist = task_hist + [((image_path,), None)]
|
| 527 |
+
return history, task_hist, prompt
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
# 示例2:场景文字
|
| 532 |
+
def load_example_2(history, task_hist):
|
| 533 |
+
prompt = "提取文档图片中正文的所有信息用markdown 格式表示,其中页眉、页脚部分忽略,表格用html 格式表达,文档中公式用latex 格式表示,按照阅读顺序组织进行解析。"
|
| 534 |
+
image_url = EXAMPLE_IMAGES["parsing"]
|
| 535 |
+
# 下载 URL 图片到本地
|
| 536 |
+
image_path = download_url_image(image_url)
|
| 537 |
+
# 清空对话历史
|
| 538 |
+
history = []
|
| 539 |
+
task_hist = []
|
| 540 |
+
history = history + [((image_path,), None)]
|
| 541 |
+
task_hist = task_hist + [((image_path,), None)]
|
| 542 |
+
return history, task_hist, prompt
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
# 示例3:表格提取
|
| 547 |
+
def load_example_3(history, task_hist):
|
| 548 |
+
prompt = "提取图片中的:['单价', '上车时间','发票号码', '省前缀', '总金额', '发票代码', '下车时间', '里程数'] 的字段内容,并且按照JSON格式返回。"
|
| 549 |
+
image_url = EXAMPLE_IMAGES["ie"]
|
| 550 |
+
# 下载 URL 图片到本地
|
| 551 |
+
image_path = download_url_image(image_url)
|
| 552 |
+
# 清空对话历史
|
| 553 |
+
history = []
|
| 554 |
+
task_hist = []
|
| 555 |
+
history = history + [((image_path,), None)]
|
| 556 |
+
task_hist = task_hist + [((image_path,), None)]
|
| 557 |
+
return history, task_hist, prompt
|
| 558 |
+
|
| 559 |
+
# 示例4:手写体
|
| 560 |
+
def load_example_4(history, task_hist):
|
| 561 |
+
prompt = "What is the highest life expectancy at birth of male?"
|
| 562 |
+
image_url = EXAMPLE_IMAGES["vqa"]
|
| 563 |
+
# 下载 URL 图��到本地
|
| 564 |
+
image_path = download_url_image(image_url)
|
| 565 |
+
# 清空对话历史
|
| 566 |
+
history = []
|
| 567 |
+
task_hist = []
|
| 568 |
+
history = history + [((image_path,), None)]
|
| 569 |
+
task_hist = task_hist + [((image_path,), None)]
|
| 570 |
+
return history, task_hist, prompt
|
| 571 |
+
|
| 572 |
+
# 示例5:翻译
|
| 573 |
+
def load_example_5(history, task_hist):
|
| 574 |
+
prompt = "提取图中文字,并将其翻译成英文。"
|
| 575 |
+
image_url = EXAMPLE_IMAGES["translation"]
|
| 576 |
+
# 下载 URL 图片到本地
|
| 577 |
+
image_path = download_url_image(image_url)
|
| 578 |
+
# 清空对话历史
|
| 579 |
+
history = []
|
| 580 |
+
task_hist = []
|
| 581 |
+
history = history + [((image_path,), None)]
|
| 582 |
+
task_hist = task_hist + [((image_path,), None)]
|
| 583 |
+
return history, task_hist, prompt
|
| 584 |
+
|
| 585 |
+
# 绑定事件
|
| 586 |
+
example_1_btn.click(load_example_1, [chatbot, task_history], [chatbot, task_history, query])
|
| 587 |
+
example_2_btn.click(load_example_2, [chatbot, task_history], [chatbot, task_history, query])
|
| 588 |
+
example_3_btn.click(load_example_3, [chatbot, task_history], [chatbot, task_history, query])
|
| 589 |
+
example_4_btn.click(load_example_4, [chatbot, task_history], [chatbot, task_history, query])
|
| 590 |
+
example_5_btn.click(load_example_5, [chatbot, task_history], [chatbot, task_history, query])
|
| 591 |
+
|
| 592 |
+
submit_btn.click(add_text, [chatbot, task_history, query],
|
| 593 |
+
[chatbot, task_history]).then(predict, [chatbot, task_history], [chatbot], show_progress=True)
|
| 594 |
+
submit_btn.click(reset_user_input, [], [query])
|
| 595 |
+
empty_bin.click(reset_state, [chatbot, task_history], [chatbot], show_progress=True)
|
| 596 |
+
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
|
| 597 |
+
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)
|
| 598 |
+
|
| 599 |
+
# 功能说明区域
|
| 600 |
+
with gr.Row():
|
| 601 |
+
with gr.Column(scale=1):
|
| 602 |
+
gr.HTML("""
|
| 603 |
+
<div class="feature-section">
|
| 604 |
+
<div class="section-title">✨ 核心功能</div>
|
| 605 |
+
<ul style="line-height: 2; color: #4b5563; font-size: 14px; margin: 0; padding-left: 20px;">
|
| 606 |
+
<li><strong>🎯 高精度文字检测识别</strong> - 支持多场景文字检测与识别</li>
|
| 607 |
+
<li><strong>📐 智能文档解析</strong> - 自动识别文档结构,支持多粒度文档解析</li>
|
| 608 |
+
<li><strong>📋 信息提取</strong> - 支持30+高频卡证票据识别和结构化输出</li>
|
| 609 |
+
<li><strong>✏️ 视觉问答</strong> - 支持以文本为中心的开放式问答</li>
|
| 610 |
+
<li><strong>🌍 跨语言翻译</strong> - 支持中英互译及14+语种译为中英文</li>
|
| 611 |
+
</ul>
|
| 612 |
+
</div>
|
| 613 |
+
""")
|
| 614 |
+
|
| 615 |
+
with gr.Column(scale=1):
|
| 616 |
+
gr.HTML("""
|
| 617 |
+
<div class="feature-section">
|
| 618 |
+
<div class="section-title">💡 使用建议</div>
|
| 619 |
+
<ul style="line-height: 2; color: #4b5563; font-size: 14px; margin: 0; padding-left: 20px;">
|
| 620 |
+
<li><strong>图片质量</strong> - 确保图片清晰,光线充足,分辨率适中</li>
|
| 621 |
+
<li><strong>拍摄角度</strong> - 避免严重倾斜、遮挡或反光,正面拍摄效果最佳</li>
|
| 622 |
+
<li><strong>文件大小</strong> - 建议单张图片不超过 10MB,支持 JPG/PNG 格式</li>
|
| 623 |
+
<li><strong>使用场景</strong> - 适用于文字检测识别、文档数字化、票据识别、信息提取、文字图片翻译等</li>
|
| 624 |
+
<li><strong>合规使用</strong> - 仅供学习研究,请遵守法律法规,尊重隐私权</li>
|
| 625 |
+
</ul>
|
| 626 |
+
</div>
|
| 627 |
+
""")
|
| 628 |
+
|
| 629 |
+
# 底部版权信息
|
| 630 |
+
gr.HTML("""
|
| 631 |
+
<div style="text-align: center; color: #9ca3af; font-size: 13px; margin-top: 40px; padding: 20px; border-top: 1px solid #e5e7eb;">
|
| 632 |
+
<p style="margin: 0;">© 2025 Tencent Hunyuan Team. All rights reserved.</p>
|
| 633 |
+
<p style="margin: 5px 0 0 0;">本系统基于 HunyuanOCR 构建 | 仅供学习研究使用</p>
|
| 634 |
+
</div>
|
| 635 |
+
""")
|
| 636 |
+
|
| 637 |
+
demo.queue().launch(
|
| 638 |
+
share=args.share,
|
| 639 |
+
inbrowser=args.inbrowser,
|
| 640 |
+
# server_port=args.server_port,
|
| 641 |
+
# server_name=args.server_name,
|
| 642 |
+
)
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
def main():
|
| 646 |
+
args = _get_args()
|
| 647 |
+
model, processor = _load_model_processor(args)
|
| 648 |
+
_launch_demo(args, model, processor)
|
| 649 |
+
|
| 650 |
+
|
| 651 |
+
if __name__ == '__main__':
|
| 652 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.6.0
|
| 2 |
+
git+https://github.com/ManaEstras/transformers.git@v4.57.1.hyvl
|
| 3 |
+
tokenizers
|
| 4 |
+
accelerate
|
| 5 |
+
einops
|
| 6 |
+
addict
|
| 7 |
+
easydict
|
| 8 |
+
torchvision
|
| 9 |
+
flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
| 10 |
+
PyMuPDF
|
| 11 |
+
hf_transfer
|
| 12 |
+
qwen_vl_utils
|