Spaces:
Sleeping
Sleeping
Update api_app.py
Browse files- api_app.py +161 -153
api_app.py
CHANGED
|
@@ -1,153 +1,161 @@
|
|
| 1 |
-
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 2 |
-
from fastapi.responses import JSONResponse
|
| 3 |
-
import torch
|
| 4 |
-
import torchvision.models as models
|
| 5 |
-
import torchvision.transforms as transforms
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import torch.nn as nn
|
| 8 |
-
import io
|
| 9 |
-
import numpy as np
|
| 10 |
-
import os
|
| 11 |
-
from typing import List, Dict, Any
|
| 12 |
-
|
| 13 |
-
# Importy dla Grad-CAM
|
| 14 |
-
from pytorch_grad_cam import GradCAMPlusPlus
|
| 15 |
-
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 16 |
-
from huggingface_hub import hf_hub_download # Do pobierania modelu z Huba
|
| 17 |
-
|
| 18 |
-
# --- Konfiguracja ---
|
| 19 |
-
# Upewnij si臋, 偶e te warto艣ci s膮 zgodne z Twoim repozytorium modelu
|
| 20 |
-
HF_MODEL_REPO_ID = "Enterwar99/MODEL_MAMMOGRAFII"
|
| 21 |
-
MODEL_FILENAME = "best_model.pth" # Nazwa pliku modelu w repozytorium
|
| 22 |
-
|
| 23 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
-
IMAGENET_MEAN = [0.485, 0.456, 0.406]
|
| 25 |
-
IMAGENET_STD = [0.229, 0.224, 0.225]
|
| 26 |
-
|
| 27 |
-
# Globalne zmienne dla modelu i transformacji
|
| 28 |
-
model_instance = None
|
| 29 |
-
transform_pipeline = None
|
| 30 |
-
|
| 31 |
-
interpretations_dict = {
|
| 32 |
-
1: "Wynik negatywny - brak zmian nowotworowych",
|
| 33 |
-
2: "Zmiana 艂agodna",
|
| 34 |
-
3: "Prawdopodobnie zmiana 艂agodna - zalecana kontrola",
|
| 35 |
-
4: "Podejrzenie zmiany z艂o艣liwej - zalecana biopsja",
|
| 36 |
-
5: "Wysoka podejrzliwo艣膰 z艂o艣liwo艣ci - wymagana biopsja"
|
| 37 |
-
}
|
| 38 |
-
|
| 39 |
-
# --- Inicjalizacja modelu ---
|
| 40 |
-
def initialize_model():
|
| 41 |
-
global model_instance, transform_pipeline
|
| 42 |
-
if model_instance is not None:
|
| 43 |
-
return
|
| 44 |
-
|
| 45 |
-
print(f"Pobieranie modelu {MODEL_FILENAME} z repozytorium {HF_MODEL_REPO_ID}...")
|
| 46 |
-
try:
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
print(f"
|
| 61 |
-
model_arch.
|
| 62 |
-
model_arch.
|
| 63 |
-
model_arch.
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
import torch
|
| 4 |
+
import torchvision.models as models
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import io
|
| 9 |
+
import numpy as np
|
| 10 |
+
import os
|
| 11 |
+
from typing import List, Dict, Any
|
| 12 |
+
|
| 13 |
+
# Importy dla Grad-CAM
|
| 14 |
+
from pytorch_grad_cam import GradCAMPlusPlus
|
| 15 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 16 |
+
from huggingface_hub import hf_hub_download # Do pobierania modelu z Huba
|
| 17 |
+
|
| 18 |
+
# --- Konfiguracja ---
|
| 19 |
+
# Upewnij si臋, 偶e te warto艣ci s膮 zgodne z Twoim repozytorium modelu
|
| 20 |
+
HF_MODEL_REPO_ID = "Enterwar99/MODEL_MAMMOGRAFII"
|
| 21 |
+
MODEL_FILENAME = "best_model.pth" # Nazwa pliku modelu w repozytorium
|
| 22 |
+
|
| 23 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
+
IMAGENET_MEAN = [0.485, 0.456, 0.406]
|
| 25 |
+
IMAGENET_STD = [0.229, 0.224, 0.225]
|
| 26 |
+
|
| 27 |
+
# Globalne zmienne dla modelu i transformacji
|
| 28 |
+
model_instance = None
|
| 29 |
+
transform_pipeline = None
|
| 30 |
+
|
| 31 |
+
interpretations_dict = {
|
| 32 |
+
1: "Wynik negatywny - brak zmian nowotworowych",
|
| 33 |
+
2: "Zmiana 艂agodna",
|
| 34 |
+
3: "Prawdopodobnie zmiana 艂agodna - zalecana kontrola",
|
| 35 |
+
4: "Podejrzenie zmiany z艂o艣liwej - zalecana biopsja",
|
| 36 |
+
5: "Wysoka podejrzliwo艣膰 z艂o艣liwo艣ci - wymagana biopsja"
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
# --- Inicjalizacja modelu ---
|
| 40 |
+
def initialize_model():
|
| 41 |
+
global model_instance, transform_pipeline
|
| 42 |
+
if model_instance is not None:
|
| 43 |
+
return
|
| 44 |
+
|
| 45 |
+
print(f"Pobieranie modelu {MODEL_FILENAME} z repozytorium {HF_MODEL_REPO_ID}...")
|
| 46 |
+
try:
|
| 47 |
+
# Odczytaj token z sekret贸w, je艣li jest dost臋pny
|
| 48 |
+
# Nazwa zmiennej 艣rodowiskowej musi by膰 taka sama jak nazwa sekretu w ustawieniach Space
|
| 49 |
+
hf_auth_token = os.environ.get("HF_TOKEN_MODEL_READ")
|
| 50 |
+
if hf_auth_token:
|
| 51 |
+
print("U偶ywam tokenu HF_TOKEN_MODEL_READ do pobrania modelu.")
|
| 52 |
+
else:
|
| 53 |
+
print("OSTRZE呕ENIE: Sekret HF_TOKEN_MODEL_READ nie zosta艂 znaleziony. Pr贸ba pobrania modelu bez tokenu (mo偶e si臋 nie uda膰 dla prywatnych repozytori贸w).")
|
| 54 |
+
|
| 55 |
+
model_pt_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=MODEL_FILENAME, token=hf_auth_token)
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"B艂膮d podczas pobierania modelu z Hugging Face Hub: {e}")
|
| 58 |
+
raise RuntimeError(f"Nie mo偶na pobra膰 modelu: {e}")
|
| 59 |
+
|
| 60 |
+
print(f"Inicjalizacja architektury modelu ResNet-18...")
|
| 61 |
+
model_arch = models.resnet18(weights=None)
|
| 62 |
+
num_feats = model_arch.fc.in_features
|
| 63 |
+
model_arch.fc = nn.Sequential(
|
| 64 |
+
nn.Dropout(0.5),
|
| 65 |
+
nn.Linear(num_feats, 5)
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
print(f"艁adowanie wag modelu z {model_pt_path}...")
|
| 69 |
+
model_arch.load_state_dict(torch.load(model_pt_path, map_location=DEVICE))
|
| 70 |
+
model_arch.to(DEVICE)
|
| 71 |
+
model_arch.eval()
|
| 72 |
+
model_instance = model_arch
|
| 73 |
+
|
| 74 |
+
transform_pipeline = transforms.Compose([
|
| 75 |
+
transforms.Resize((224, 224)),
|
| 76 |
+
transforms.ToTensor(),
|
| 77 |
+
transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
|
| 78 |
+
])
|
| 79 |
+
print(f"Model BI-RADS classifier initialized successfully on device: {DEVICE}")
|
| 80 |
+
|
| 81 |
+
# --- Aplikacja FastAPI ---
|
| 82 |
+
app = FastAPI(title="BI-RADS Mammography Classification API")
|
| 83 |
+
|
| 84 |
+
@app.on_event("startup")
|
| 85 |
+
async def startup_event():
|
| 86 |
+
"""Wywo艂ywane przy starcie aplikacji FastAPI."""
|
| 87 |
+
initialize_model()
|
| 88 |
+
|
| 89 |
+
@app.post("/predict/", response_model=List[Dict[str, Any]])
|
| 90 |
+
async def predict_image(file: UploadFile = File(...)):
|
| 91 |
+
"""
|
| 92 |
+
Endpoint do klasyfikacji obrazu mammograficznego.
|
| 93 |
+
Oczekuje pliku obrazu (JPG, PNG).
|
| 94 |
+
Zwraca list臋 z wynikami (nawet je艣li tylko jeden obraz).
|
| 95 |
+
"""
|
| 96 |
+
if model_instance is None or transform_pipeline is None:
|
| 97 |
+
raise HTTPException(status_code=503, detail="Model nie jest zainicjalizowany. Spr贸buj ponownie za chwil臋.")
|
| 98 |
+
|
| 99 |
+
try:
|
| 100 |
+
contents = await file.read()
|
| 101 |
+
image = Image.open(io.BytesIO(contents)).convert("RGB")
|
| 102 |
+
except Exception as e:
|
| 103 |
+
raise HTTPException(status_code=400, detail=f"Nie mo偶na odczyta膰 pliku obrazu: {e}")
|
| 104 |
+
|
| 105 |
+
# Preprocessing
|
| 106 |
+
input_tensor = transform_pipeline(image).unsqueeze(0).to(DEVICE)
|
| 107 |
+
|
| 108 |
+
# Inference
|
| 109 |
+
with torch.no_grad():
|
| 110 |
+
model_outputs = model_instance(input_tensor)
|
| 111 |
+
|
| 112 |
+
# Postprocessing
|
| 113 |
+
probs = torch.nn.functional.softmax(model_outputs, dim=1)
|
| 114 |
+
confidences, predicted_indices = torch.max(probs, 1)
|
| 115 |
+
|
| 116 |
+
results = []
|
| 117 |
+
for i in range(len(predicted_indices)): # P臋tla na wypadek przysz艂ego batch processingu
|
| 118 |
+
birads_category = predicted_indices[i].item() + 1
|
| 119 |
+
confidence = confidences[i].item()
|
| 120 |
+
interpretation = interpretations_dict.get(birads_category, "Nieznana klasyfikacja")
|
| 121 |
+
|
| 122 |
+
all_class_probs_tensor = probs[i].cpu().numpy()
|
| 123 |
+
class_probabilities = {str(j+1): float(all_class_probs_tensor[j]) for j in range(len(all_class_probs_tensor))}
|
| 124 |
+
|
| 125 |
+
# Generowanie Grad-CAM
|
| 126 |
+
grad_cam_map_serialized = None
|
| 127 |
+
try:
|
| 128 |
+
for param in model_instance.parameters():
|
| 129 |
+
param.requires_grad_(True)
|
| 130 |
+
model_instance.eval()
|
| 131 |
+
|
| 132 |
+
target_layers = [model_instance.layer4[-1]] # Dla ResNet-18
|
| 133 |
+
cam_algorithm = GradCAMPlusPlus(model=model_instance, target_layers=target_layers)
|
| 134 |
+
|
| 135 |
+
current_input_tensor_for_cam = input_tensor[i].unsqueeze(0).clone().detach().requires_grad_(True)
|
| 136 |
+
targets_for_cam = [ClassifierOutputTarget(predicted_indices[i].item())]
|
| 137 |
+
|
| 138 |
+
grayscale_cam = cam_algorithm(input_tensor=current_input_tensor_for_cam, targets=targets_for_cam)
|
| 139 |
+
|
| 140 |
+
if grayscale_cam is not None:
|
| 141 |
+
grad_cam_map_np = grayscale_cam[0, :]
|
| 142 |
+
grad_cam_map_serialized = grad_cam_map_np.tolist()
|
| 143 |
+
|
| 144 |
+
except Exception as e:
|
| 145 |
+
print(f"B艂膮d podczas generowania Grad-CAM w API: {e}")
|
| 146 |
+
|
| 147 |
+
results.append({
|
| 148 |
+
"birads": birads_category,
|
| 149 |
+
"confidence": confidence,
|
| 150 |
+
"interpretation": interpretation,
|
| 151 |
+
"class_probabilities": class_probabilities,
|
| 152 |
+
"grad_cam_map": grad_cam_map_serialized
|
| 153 |
+
})
|
| 154 |
+
|
| 155 |
+
return JSONResponse(content=results)
|
| 156 |
+
|
| 157 |
+
@app.get("/")
|
| 158 |
+
async def root():
|
| 159 |
+
return {"message": "Witaj w BI-RADS Classification API! U偶yj endpointu /predict/ do wysy艂ania obraz贸w."}
|
| 160 |
+
|
| 161 |
+
# Do uruchomienia lokalnie: uvicorn api_app:app --reload
|