Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import time | |
| import math | |
| import random | |
| import torch | |
| try: | |
| import spaces | |
| except: | |
| class spaces(): | |
| def GPU(*args, **kwargs): | |
| def decorator(function): | |
| return lambda *dummy_args, **dummy_kwargs: function(*dummy_args, **dummy_kwargs) | |
| return decorator | |
| from diffusers import StableDiffusionXLInpaintPipeline | |
| from PIL import Image | |
| import PIL.ImageOps | |
| from pillow_heif import register_heif_opener | |
| register_heif_opener() | |
| max_64_bit_int = np.iinfo(np.int32).max | |
| if torch.cuda.is_available(): | |
| device = "cuda" | |
| floatType = torch.float16 | |
| variant = "fp16" | |
| else: | |
| device = "cpu" | |
| floatType = torch.float32 | |
| variant = None | |
| pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant) | |
| pipe = pipe.to(device) | |
| default_local_storage = { | |
| "prompt": "", | |
| "negative_prompt": "Ugly, malformed, noise, blur, watermark", | |
| "num_inference_steps": 25, | |
| "guidance_scale": 7, | |
| "image_guidance_scale": 1.1, | |
| "strength": 0.99, | |
| "denoising_steps": 1000, | |
| "randomize_seed": True, | |
| "seed": random.randint(0, max_64_bit_int), | |
| "debug_mode": False | |
| } | |
| def save_preferences_prompt(preferences, value): | |
| preferences["prompt"] = value | |
| return preferences | |
| def save_preferences_negative_prompt(preferences, value): | |
| preferences["negative_prompt"] = value | |
| return preferences | |
| def save_preferences_num_inference_steps(preferences, value): | |
| preferences["num_inference_steps"] = value | |
| return preferences | |
| def save_preferences_guidance_scale(preferences, value): | |
| preferences["guidance_scale"] = value | |
| return preferences | |
| def save_preferences_image_guidance_scale(preferences, value): | |
| preferences["image_guidance_scale"] = value | |
| return preferences | |
| def save_preferences_strength(preferences, value): | |
| preferences["strength"] = value | |
| return preferences | |
| def save_preferences_denoising_steps(preferences, value): | |
| preferences["denoising_steps"] = value | |
| return preferences | |
| def save_preferences_randomize_seed(preferences, value): | |
| preferences["randomize_seed"] = value | |
| return preferences | |
| def save_preferences_seed(preferences, value): | |
| preferences["seed"] = value | |
| return preferences | |
| def save_preferences_debug_mode(preferences, value): | |
| preferences["debug_mode"] = value | |
| return preferences | |
| def load_preferences(saved_prefs): | |
| saved_prefs = init_preferences(saved_prefs) | |
| return [ | |
| saved_prefs["prompt"], | |
| saved_prefs["negative_prompt"], | |
| saved_prefs["num_inference_steps"], | |
| saved_prefs["guidance_scale"], | |
| saved_prefs["image_guidance_scale"], | |
| saved_prefs["strength"], | |
| saved_prefs["denoising_steps"], | |
| saved_prefs["randomize_seed"], | |
| saved_prefs["seed"], | |
| saved_prefs["debug_mode"] | |
| ] | |
| def init_preferences(saved_prefs): | |
| if saved_prefs is None: | |
| saved_prefs = default_local_storage | |
| return saved_prefs | |
| def update_seed(is_randomize_seed, seed): | |
| if is_randomize_seed: | |
| return random.randint(0, max_64_bit_int) | |
| return seed | |
| def toggle_debug(is_debug_mode): | |
| return [gr.update(visible = True)] + [gr.update(visible = is_debug_mode)] * 2 | |
| def check( | |
| source_img, | |
| prompt, | |
| uploaded_mask: Image.Image, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| image_guidance_scale, | |
| strength, | |
| denoising_steps, | |
| is_randomize_seed, | |
| seed, | |
| debug_mode, | |
| progress = gr.Progress() | |
| ): | |
| if source_img is None: | |
| raise gr.Error("Please provide an image.") | |
| if prompt is None or prompt == "": | |
| raise gr.Error("Please provide a prompt input.") | |
| def inpaint( | |
| source_img, | |
| prompt, | |
| uploaded_mask: Image.Image, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| image_guidance_scale, | |
| strength, | |
| denoising_steps, | |
| is_randomize_seed, | |
| seed, | |
| debug_mode, | |
| progress = gr.Progress() | |
| ): | |
| check( | |
| source_img, | |
| prompt, | |
| uploaded_mask, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| image_guidance_scale, | |
| strength, | |
| denoising_steps, | |
| is_randomize_seed, | |
| seed, | |
| debug_mode | |
| ) | |
| start = time.time() | |
| progress(0, desc = "Preparing data...") | |
| if negative_prompt is None: | |
| negative_prompt = "" | |
| if num_inference_steps is None: | |
| num_inference_steps = 25 | |
| if guidance_scale is None: | |
| guidance_scale = 7 | |
| if image_guidance_scale is None: | |
| image_guidance_scale = 1.1 | |
| if strength is None: | |
| strength = 0.99 | |
| if denoising_steps is None: | |
| denoising_steps = 1000 | |
| if seed is None: | |
| seed = random.randint(0, max_64_bit_int) | |
| random.seed(seed) | |
| #pipe = pipe.manual_seed(seed) | |
| input_image = source_img["background"].convert("RGB") | |
| original_height, original_width, original_channel = np.array(input_image).shape | |
| output_width = original_width | |
| output_height = original_height | |
| if uploaded_mask is None: | |
| mask_image = source_img["layers"][0].convert("RGB") | |
| else: | |
| mask_image = uploaded_mask.convert("RGB") | |
| mask_image = mask_image.resize((original_width, original_height)) | |
| # Limited to 1 million pixels | |
| if 1024 * 1024 < output_width * output_height: | |
| factor = ((1024 * 1024) / (output_width * output_height))**0.5 | |
| process_width = math.floor(output_width * factor) | |
| process_height = math.floor(output_height * factor) | |
| limitation = " Due to technical limitation, the image have been downscaled and then upscaled."; | |
| else: | |
| process_width = output_width | |
| process_height = output_height | |
| limitation = ""; | |
| # Width and height must be multiple of 8 | |
| if (process_width % 8) != 0 or (process_height % 8) != 0: | |
| if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024): | |
| process_width = process_width - (process_width % 8) + 8 | |
| process_height = process_height - (process_height % 8) + 8 | |
| elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024): | |
| process_width = process_width - (process_width % 8) + 8 | |
| process_height = process_height - (process_height % 8) | |
| elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024): | |
| process_width = process_width - (process_width % 8) | |
| process_height = process_height - (process_height % 8) + 8 | |
| else: | |
| process_width = process_width - (process_width % 8) | |
| process_height = process_height - (process_height % 8) | |
| if torch.cuda.is_available(): | |
| progress(None, desc = "Searching a GPU...") | |
| output_image = inpaint_on_gpu( | |
| seed, | |
| process_width, | |
| process_height, | |
| prompt, | |
| negative_prompt, | |
| input_image, | |
| mask_image, | |
| num_inference_steps, | |
| guidance_scale, | |
| image_guidance_scale, | |
| strength, | |
| denoising_steps, | |
| progress | |
| ) | |
| if limitation != "": | |
| output_image = output_image.resize((output_width, output_height)) | |
| if debug_mode == False: | |
| input_image = None | |
| mask_image = None | |
| end = time.time() | |
| secondes = int(end - start) | |
| minutes = math.floor(secondes / 60) | |
| secondes = secondes - (minutes * 60) | |
| hours = math.floor(minutes / 60) | |
| minutes = minutes - (hours * 60) | |
| return [ | |
| output_image, | |
| ("Start again to get a different result. " if is_randomize_seed else "") + "The image has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." + limitation, | |
| input_image, | |
| mask_image | |
| ] | |
| def inpaint_on_gpu2( | |
| seed, | |
| process_width, | |
| process_height, | |
| prompt, | |
| negative_prompt, | |
| input_image, | |
| mask_image, | |
| num_inference_steps, | |
| guidance_scale, | |
| image_guidance_scale, | |
| strength, | |
| denoising_steps, | |
| progress | |
| ): | |
| return input_image | |
| def inpaint_on_gpu( | |
| seed, | |
| process_width, | |
| process_height, | |
| prompt, | |
| negative_prompt, | |
| input_image, | |
| mask_image, | |
| num_inference_steps, | |
| guidance_scale, | |
| image_guidance_scale, | |
| strength, | |
| denoising_steps, | |
| progress | |
| ): | |
| progress(None, desc = "Processing...") | |
| return pipe( | |
| seeds = [seed], | |
| width = process_width, | |
| height = process_height, | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| image = input_image, | |
| mask_image = mask_image, | |
| num_inference_steps = num_inference_steps, | |
| guidance_scale = guidance_scale, | |
| image_guidance_scale = image_guidance_scale, | |
| strength = strength, | |
| denoising_steps = denoising_steps, | |
| show_progress_bar = True | |
| ).images[0] | |
| with gr.Blocks() as interface: | |
| local_storage = gr.BrowserState(default_local_storage) | |
| gr.HTML( | |
| """ | |
| <h1 style="text-align: center;">Inpaint / Outpaint</h1> | |
| <p style="text-align: center;">Modifies one detail of your image, at any resolution, freely, without account, without watermark, without installation, which can be downloaded</p> | |
| <br/> | |
| <br/> | |
| ✨ Powered by <i>SDXL 1.0</i> artificial intellingence. For illustration purpose, not information purpose. The new content is not based on real information but imagination. | |
| <br/> | |
| <ul> | |
| <li>To change the <b>view angle</b> of your image, I recommend to use <i>Zero123</i>,</li> | |
| <li>To <b>upscale</b> your image, I recommend to use <i><a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR">SUPIR</a></i>,</li> | |
| <li>To <b>slightly change</b> your image, I recommend to use <i>Image-to-Image SDXL</i>,</li> | |
| <li>If you need to enlarge the <b>viewpoint</b> of your image, I recommend you to use <i>Uncrop</i>,</li> | |
| <li>To remove the <b>background</b> of your image, I recommend to use <i>BRIA</i>,</li> | |
| <li>To make a <b>tile</b> of your image, I recommend to use <i>Make My Image Tile</i>,</li> | |
| <li>To modify <b>anything else</b> on your image, I recommend to use <i>Instruct Pix2Pix</i>.</li> | |
| </ul> | |
| <br/> | |
| """ + ("🏃♀️ Estimated time: few minutes. Current device: GPU." if torch.cuda.is_available() else "🐌 Slow process... ~1 hour. Current device: CPU.") + """ | |
| You can duplicate this space on a free account, it's designed to work on CPU, GPU and ZeroGPU.<br/> | |
| <a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Inpaint?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a> | |
| <br/> | |
| ⚖️ You can use, modify and share the generated images but not for commercial uses. | |
| """ | |
| ) | |
| with gr.Column(): | |
| source_img = gr.ImageMask(label = "Your image (click on the landscape 🌄 to upload your image; click on the pen 🖌️ to draw the mask)", type = "pil", brush=gr.Brush(colors=["#FFFFFF80"], color_mode="fixed")) | |
| prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image", lines = 2) | |
| with gr.Accordion("Upload a mask", open = False): | |
| uploaded_mask = gr.Image(label = "Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources = ["upload"], type = "pil") | |
| with gr.Accordion("Advanced options", open = False): | |
| negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = "Ugly, malformed, noise, blur, watermark") | |
| num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality") | |
| guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Guidance Scale", info = "lower=image quality, higher=follow the prompt") | |
| image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image") | |
| strength = gr.Slider(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area, higher=redraw from scratch") | |
| denoising_steps = gr.Number(minimum = 0, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result") | |
| randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different") | |
| seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed") | |
| debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results") | |
| submit = gr.Button("🚀 Inpaint/Outpaint", variant = "primary") | |
| warning = gr.HTML(value = "<center><span style='color: red;''>Your computer must not enter into standby mode.</span> On Chrome, you can force to keep a tab alive in <code>chrome://discards/</code> The generation time may vary on the number of steps and the resolution of the image.</center>", visible = False) | |
| inpainted_image = gr.Image(label = "Inpainted image") | |
| information = gr.HTML() | |
| original_image = gr.Image(label = "Original image", visible = False) | |
| mask_image = gr.Image(label = "Mask image", visible = False) | |
| submit.click(update_seed, inputs = [ | |
| randomize_seed, seed | |
| ], outputs = [ | |
| seed | |
| ], queue = False, show_progress = False).then(toggle_debug, debug_mode, [ | |
| warning, | |
| original_image, | |
| mask_image | |
| ], queue = False, show_progress = False).then(check, inputs = [ | |
| source_img, | |
| prompt, | |
| uploaded_mask, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| image_guidance_scale, | |
| strength, | |
| denoising_steps, | |
| randomize_seed, | |
| seed, | |
| debug_mode | |
| ], outputs = [], queue = False, show_progress = False).success(inpaint, inputs = [ | |
| source_img, | |
| prompt, | |
| uploaded_mask, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| image_guidance_scale, | |
| strength, | |
| denoising_steps, | |
| randomize_seed, | |
| seed, | |
| debug_mode | |
| ], outputs = [ | |
| inpainted_image, | |
| information, | |
| original_image, | |
| mask_image | |
| ], scroll_to_output = True) | |
| prompt.change(fn = save_preferences_prompt, inputs = [ | |
| local_storage, | |
| prompt, | |
| ], outputs = [ | |
| local_storage | |
| ]) | |
| negative_prompt.change(fn = save_preferences_negative_prompt, inputs = [ | |
| local_storage, | |
| negative_prompt, | |
| ], outputs = [ | |
| local_storage | |
| ]) | |
| num_inference_steps.change(fn = save_preferences_num_inference_steps, inputs = [ | |
| local_storage, | |
| num_inference_steps, | |
| ], outputs = [ | |
| local_storage | |
| ]) | |
| guidance_scale.change(fn = save_preferences_guidance_scale, inputs = [ | |
| local_storage, | |
| guidance_scale, | |
| ], outputs = [ | |
| local_storage | |
| ]) | |
| image_guidance_scale.change(fn = save_preferences_image_guidance_scale, inputs = [ | |
| local_storage, | |
| image_guidance_scale, | |
| ], outputs = [ | |
| local_storage | |
| ]) | |
| strength.change(fn = save_preferences_strength, inputs = [ | |
| local_storage, | |
| strength, | |
| ], outputs = [ | |
| local_storage | |
| ]) | |
| denoising_steps.change(fn = save_preferences_denoising_steps, inputs = [ | |
| local_storage, | |
| denoising_steps, | |
| ], outputs = [ | |
| local_storage | |
| ]) | |
| randomize_seed.change(fn = save_preferences_randomize_seed, inputs = [ | |
| local_storage, | |
| randomize_seed, | |
| ], outputs = [ | |
| local_storage | |
| ]) | |
| seed.change(fn = save_preferences_seed, inputs = [ | |
| local_storage, | |
| seed, | |
| ], outputs = [ | |
| local_storage | |
| ]) | |
| debug_mode.change(fn = save_preferences_debug_mode, inputs = [ | |
| local_storage, | |
| debug_mode, | |
| ], outputs = [ | |
| local_storage | |
| ]) | |
| gr.Examples( | |
| fn = inpaint, | |
| inputs = [ | |
| source_img, | |
| prompt, | |
| uploaded_mask, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| image_guidance_scale, | |
| strength, | |
| denoising_steps, | |
| randomize_seed, | |
| seed, | |
| debug_mode | |
| ], | |
| outputs = [ | |
| inpainted_image, | |
| information, | |
| original_image, | |
| mask_image | |
| ], | |
| examples = [ | |
| [ | |
| "./Examples/Example7.png", | |
| "A birthday cake with lit candles", | |
| "./Examples/Mask7.png", | |
| "Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark, text, error, logo, username, sitename, URL", | |
| 10, | |
| 7, | |
| 1.1, | |
| 0.99, | |
| 1000, | |
| False, | |
| 42, | |
| False | |
| ], | |
| [ | |
| "./Examples/Example1.png", | |
| "A deer, in a forest landscape, ultrarealistic, realistic, photorealistic, 8k", | |
| "./Examples/Mask1.webp", | |
| "Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark, text, error, logo, username, sitename, URL", | |
| 25, | |
| 7, | |
| 1.1, | |
| 0.99, | |
| 1000, | |
| False, | |
| 42, | |
| False | |
| ], | |
| [ | |
| "./Examples/Example3.jpg", | |
| "An angry old woman, ultrarealistic, realistic, photorealistic, 8k", | |
| "./Examples/Mask3.gif", | |
| "Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark, text, error, logo, username, sitename, URL", | |
| 25, | |
| 7, | |
| 1.5, | |
| 0.99, | |
| 1000, | |
| False, | |
| 42, | |
| False | |
| ], | |
| [ | |
| "./Examples/Example4.gif", | |
| "A laptop, ultrarealistic, realistic, photorealistic, 8k", | |
| "./Examples/Mask4.bmp", | |
| "Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark, text, error, logo, username, sitename, URL", | |
| 25, | |
| 7, | |
| 1.1, | |
| 0.99, | |
| 1000, | |
| False, | |
| 42, | |
| False | |
| ], | |
| [ | |
| "./Examples/Example5.bmp", | |
| "A sand castle, ultrarealistic, realistic, photorealistic, 8k", | |
| "./Examples/Mask5.png", | |
| "Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark, text, error, logo, username, sitename, URL", | |
| 50, | |
| 7, | |
| 1.5, | |
| 0.5, | |
| 1000, | |
| False, | |
| 42, | |
| False | |
| ], | |
| [ | |
| "./Examples/Example2.webp", | |
| "A cat, ultrarealistic, realistic, photorealistic, 8k", | |
| "./Examples/Mask2.png", | |
| "Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark, text, error, logo, username, sitename, URL", | |
| 25, | |
| 7, | |
| 1.1, | |
| 0.99, | |
| 1000, | |
| False, | |
| 42, | |
| False | |
| ], | |
| [ | |
| "./Examples/Example6.webp", | |
| "A car, in the street, in a city, photorealistic, realistic, extremely detailled, 8k", | |
| "./Examples/Mask6.webp", | |
| "Forest, wood, trees, ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark, text, error, logo, username, sitename, URL", | |
| 25, | |
| 7, | |
| 1.1, | |
| 0.99, | |
| 1000, | |
| False, | |
| 42, | |
| False | |
| ], | |
| ], | |
| cache_examples = False, | |
| ) | |
| gr.Markdown( | |
| """ | |
| ## How to prompt your image | |
| To easily read your prompt, start with the subject, then describ the pose or action, then secondary elements, then the background, then the graphical style, then the image quality: | |
| ``` | |
| A Vietnamese woman, red clothes, walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k | |
| ``` | |
| You can use round brackets to increase the importance of a part: | |
| ``` | |
| A Vietnamese woman, (red clothes), walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k | |
| ``` | |
| You can use several levels of round brackets to even more increase the importance of a part: | |
| ``` | |
| A Vietnamese woman, ((red clothes)), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k | |
| ``` | |
| You can use number instead of several round brackets: | |
| ``` | |
| A Vietnamese woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k | |
| ``` | |
| You can do the same thing with square brackets to decrease the importance of a part: | |
| ``` | |
| A [Vietnamese] woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k | |
| ``` | |
| To easily read your negative prompt, organize it the same way as your prompt (not important for the AI): | |
| ``` | |
| man, boy, hat, running, tree, bicycle, forest, drawing, painting, cartoon, 3d, monochrome, blurry, noisy, bokeh | |
| ``` | |
| """ | |
| ) | |
| # Load saved preferences when the page loads | |
| interface.load( | |
| fn=load_preferences, inputs = [ | |
| local_storage | |
| ], outputs = [ | |
| prompt, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| image_guidance_scale, | |
| strength, | |
| denoising_steps, | |
| randomize_seed, | |
| seed, | |
| debug_mode | |
| ] | |
| ) | |
| interface.queue().launch(mcp_server=True) |