Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import os, time, pickle
|
| 3 |
+
import torch
|
| 4 |
+
from omegaconf import OmegaConf
|
| 5 |
+
import hydra
|
| 6 |
+
import logging
|
| 7 |
+
from rfdiffusion.util import writepdb_multi, writepdb
|
| 8 |
+
from rfdiffusion.inference import utils as iu
|
| 9 |
+
from hydra.core.hydra_config import HydraConfig
|
| 10 |
+
import numpy as np
|
| 11 |
+
import random
|
| 12 |
+
import glob
|
| 13 |
+
import gradio as gr
|
| 14 |
+
def greet(mtf):
|
| 15 |
+
return "Hello " + name + "!!"
|
| 16 |
+
def make_deterministic(seed=0):
|
| 17 |
+
torch.manual_seed(seed)
|
| 18 |
+
np.random.seed(seed)
|
| 19 |
+
random.seed(seed)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@hydra.main(version_base=None, config_path="../config/inference", config_name="base")
|
| 23 |
+
def main(conf: HydraConfig) -> None:
|
| 24 |
+
log = logging.getLogger(__name__)
|
| 25 |
+
if conf.inference.deterministic:
|
| 26 |
+
make_deterministic()
|
| 27 |
+
|
| 28 |
+
# Check for available GPU and print result of check
|
| 29 |
+
if torch.cuda.is_available():
|
| 30 |
+
device_name = torch.cuda.get_device_name(torch.cuda.current_device())
|
| 31 |
+
log.info(f"Found GPU with device_name {device_name}. Will run RFdiffusion on {device_name}")
|
| 32 |
+
else:
|
| 33 |
+
log.info("////////////////////////////////////////////////")
|
| 34 |
+
log.info("///// NO GPU DETECTED! Falling back to CPU /////")
|
| 35 |
+
log.info("////////////////////////////////////////////////")
|
| 36 |
+
|
| 37 |
+
# Initialize sampler and target/contig.
|
| 38 |
+
sampler = iu.sampler_selector(conf)
|
| 39 |
+
|
| 40 |
+
# Loop over number of designs to sample.
|
| 41 |
+
design_startnum = sampler.inf_conf.design_startnum
|
| 42 |
+
if sampler.inf_conf.design_startnum == -1:
|
| 43 |
+
existing = glob.glob(sampler.inf_conf.output_prefix + "*.pdb")
|
| 44 |
+
indices = [-1]
|
| 45 |
+
for e in existing:
|
| 46 |
+
print(e)
|
| 47 |
+
m = re.match(".*_(\d+)\.pdb$", e)
|
| 48 |
+
print(m)
|
| 49 |
+
if not m:
|
| 50 |
+
continue
|
| 51 |
+
m = m.groups()[0]
|
| 52 |
+
indices.append(int(m))
|
| 53 |
+
design_startnum = max(indices) + 1
|
| 54 |
+
|
| 55 |
+
for i_des in range(design_startnum, design_startnum + sampler.inf_conf.num_designs):
|
| 56 |
+
if conf.inference.deterministic:
|
| 57 |
+
make_deterministic(i_des)
|
| 58 |
+
|
| 59 |
+
start_time = time.time()
|
| 60 |
+
out_prefix = f"{sampler.inf_conf.output_prefix}_{i_des}"
|
| 61 |
+
log.info(f"Making design {out_prefix}")
|
| 62 |
+
if sampler.inf_conf.cautious and os.path.exists(out_prefix + ".pdb"):
|
| 63 |
+
log.info(
|
| 64 |
+
f"(cautious mode) Skipping this design because {out_prefix}.pdb already exists."
|
| 65 |
+
)
|
| 66 |
+
continue
|
| 67 |
+
|
| 68 |
+
x_init, seq_init = sampler.sample_init()
|
| 69 |
+
denoised_xyz_stack = []
|
| 70 |
+
px0_xyz_stack = []
|
| 71 |
+
seq_stack = []
|
| 72 |
+
plddt_stack = []
|
| 73 |
+
|
| 74 |
+
x_t = torch.clone(x_init)
|
| 75 |
+
seq_t = torch.clone(seq_init)
|
| 76 |
+
# Loop over number of reverse diffusion time steps.
|
| 77 |
+
for t in range(int(sampler.t_step_input), sampler.inf_conf.final_step - 1, -1):
|
| 78 |
+
px0, x_t, seq_t, plddt = sampler.sample_step(
|
| 79 |
+
t=t, x_t=x_t, seq_init=seq_t, final_step=sampler.inf_conf.final_step
|
| 80 |
+
)
|
| 81 |
+
px0_xyz_stack.append(px0)
|
| 82 |
+
denoised_xyz_stack.append(x_t)
|
| 83 |
+
seq_stack.append(seq_t)
|
| 84 |
+
plddt_stack.append(plddt[0]) # remove singleton leading dimension
|
| 85 |
+
|
| 86 |
+
# Flip order for better visualization in pymol
|
| 87 |
+
denoised_xyz_stack = torch.stack(denoised_xyz_stack)
|
| 88 |
+
denoised_xyz_stack = torch.flip(
|
| 89 |
+
denoised_xyz_stack,
|
| 90 |
+
[
|
| 91 |
+
0,
|
| 92 |
+
],
|
| 93 |
+
)
|
| 94 |
+
px0_xyz_stack = torch.stack(px0_xyz_stack)
|
| 95 |
+
px0_xyz_stack = torch.flip(
|
| 96 |
+
px0_xyz_stack,
|
| 97 |
+
[
|
| 98 |
+
0,
|
| 99 |
+
],
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# For logging -- don't flip
|
| 103 |
+
plddt_stack = torch.stack(plddt_stack)
|
| 104 |
+
|
| 105 |
+
# Save outputs
|
| 106 |
+
os.makedirs(os.path.dirname(out_prefix), exist_ok=True)
|
| 107 |
+
final_seq = seq_stack[-1]
|
| 108 |
+
|
| 109 |
+
# Output glycines, except for motif region
|
| 110 |
+
final_seq = torch.where(
|
| 111 |
+
torch.argmax(seq_init, dim=-1) == 21, 7, torch.argmax(seq_init, dim=-1)
|
| 112 |
+
) # 7 is glycine
|
| 113 |
+
|
| 114 |
+
bfacts = torch.ones_like(final_seq.squeeze())
|
| 115 |
+
# make bfact=0 for diffused coordinates
|
| 116 |
+
bfacts[torch.where(torch.argmax(seq_init, dim=-1) == 21, True, False)] = 0
|
| 117 |
+
# pX0 last step
|
| 118 |
+
out = f"{out_prefix}.pdb"
|
| 119 |
+
|
| 120 |
+
# Now don't output sidechains
|
| 121 |
+
writepdb(
|
| 122 |
+
out,
|
| 123 |
+
denoised_xyz_stack[0, :, :4],
|
| 124 |
+
final_seq,
|
| 125 |
+
sampler.binderlen,
|
| 126 |
+
chain_idx=sampler.chain_idx,
|
| 127 |
+
bfacts=bfacts,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# run metadata
|
| 131 |
+
trb = dict(
|
| 132 |
+
config=OmegaConf.to_container(sampler._conf, resolve=True),
|
| 133 |
+
plddt=plddt_stack.cpu().numpy(),
|
| 134 |
+
device=torch.cuda.get_device_name(torch.cuda.current_device())
|
| 135 |
+
if torch.cuda.is_available()
|
| 136 |
+
else "CPU",
|
| 137 |
+
time=time.time() - start_time,
|
| 138 |
+
)
|
| 139 |
+
if hasattr(sampler, "contig_map"):
|
| 140 |
+
for key, value in sampler.contig_map.get_mappings().items():
|
| 141 |
+
trb[key] = value
|
| 142 |
+
with open(f"{out_prefix}.trb", "wb") as f_out:
|
| 143 |
+
pickle.dump(trb, f_out)
|
| 144 |
+
|
| 145 |
+
if sampler.inf_conf.write_trajectory:
|
| 146 |
+
# trajectory pdbs
|
| 147 |
+
traj_prefix = (
|
| 148 |
+
os.path.dirname(out_prefix) + "/traj/" + os.path.basename(out_prefix)
|
| 149 |
+
)
|
| 150 |
+
os.makedirs(os.path.dirname(traj_prefix), exist_ok=True)
|
| 151 |
+
|
| 152 |
+
out = f"{traj_prefix}_Xt-1_traj.pdb"
|
| 153 |
+
writepdb_multi(
|
| 154 |
+
out,
|
| 155 |
+
denoised_xyz_stack,
|
| 156 |
+
bfacts,
|
| 157 |
+
final_seq.squeeze(),
|
| 158 |
+
use_hydrogens=False,
|
| 159 |
+
backbone_only=False,
|
| 160 |
+
chain_ids=sampler.chain_idx,
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
out = f"{traj_prefix}_pX0_traj.pdb"
|
| 164 |
+
writepdb_multi(
|
| 165 |
+
out,
|
| 166 |
+
px0_xyz_stack,
|
| 167 |
+
bfacts,
|
| 168 |
+
final_seq.squeeze(),
|
| 169 |
+
use_hydrogens=False,
|
| 170 |
+
backbone_only=False,
|
| 171 |
+
chain_ids=sampler.chain_idx,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
log.info(f"Finished design in {(time.time()-start_time)/60:.2f} minutes")
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
if __name__ == "__main__":
|
| 178 |
+
main()
|
| 179 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 180 |
+
iface.launch()
|