Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,11 +2,10 @@ import numpy as np
|
|
| 2 |
import streamlit as st
|
| 3 |
from openai import OpenAI
|
| 4 |
import os
|
| 5 |
-
import
|
| 6 |
-
from dotenv import load_dotenv, dotenv_values
|
| 7 |
load_dotenv()
|
| 8 |
|
| 9 |
-
#
|
| 10 |
client = OpenAI(
|
| 11 |
base_url="https://api-inference.huggingface.co/v1",
|
| 12 |
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token
|
|
@@ -20,42 +19,33 @@ model_links = {
|
|
| 20 |
# Pull info about the model to display
|
| 21 |
model_info = {
|
| 22 |
"Meta-Llama-3-8B": {
|
| 23 |
-
'description': """The Llama (3) model is a **Large Language Model (LLM)**
|
| 24 |
-
\
|
| 25 |
-
|
|
|
|
| 26 |
}
|
| 27 |
}
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg", "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg"]
|
| 31 |
-
|
| 32 |
def reset_conversation():
|
| 33 |
-
'''Resets Conversation'''
|
| 34 |
st.session_state.conversation = []
|
| 35 |
st.session_state.messages = []
|
| 36 |
return None
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
# Create the sidebar with the dropdown for model selection
|
| 42 |
-
selected_model = st.sidebar.selectbox("Select Model", models)
|
| 43 |
-
|
| 44 |
-
# Custom description for SciMom
|
| 45 |
-
st.sidebar.write("Built for my mom, with love. This model is pretrained with textbooks of Science NCERT.")
|
| 46 |
-
st.sidebar.write("Model used: Meta Llama, trained using: Docker AutoTrain.")
|
| 47 |
|
| 48 |
-
#
|
| 49 |
-
|
|
|
|
| 50 |
|
| 51 |
-
# Add
|
| 52 |
-
st.sidebar.
|
|
|
|
| 53 |
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
st.sidebar.markdown(model_info[selected_model]['description'])
|
| 57 |
-
st.sidebar.image(model_info[selected_model]['logo'])
|
| 58 |
-
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
|
| 59 |
|
| 60 |
if "prev_option" not in st.session_state:
|
| 61 |
st.session_state.prev_option = selected_model
|
|
@@ -68,12 +58,6 @@ if st.session_state.prev_option != selected_model:
|
|
| 68 |
# Pull in the model we want to use
|
| 69 |
repo_id = model_links[selected_model]
|
| 70 |
|
| 71 |
-
st.subheader(f'AI - {selected_model}')
|
| 72 |
-
|
| 73 |
-
# Set a default model
|
| 74 |
-
if selected_model not in st.session_state:
|
| 75 |
-
st.session_state[selected_model] = model_links[selected_model]
|
| 76 |
-
|
| 77 |
# Initialize chat history
|
| 78 |
if "messages" not in st.session_state:
|
| 79 |
st.session_state.messages = []
|
|
@@ -84,7 +68,7 @@ for message in st.session_state.messages:
|
|
| 84 |
st.markdown(message["content"])
|
| 85 |
|
| 86 |
# Accept user input
|
| 87 |
-
if prompt := st.chat_input(
|
| 88 |
# Display user message in chat message container
|
| 89 |
with st.chat_message("user"):
|
| 90 |
st.markdown(prompt)
|
|
@@ -99,17 +83,15 @@ if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
|
|
| 99 |
{"role": m["role"], "content": m["content"]}
|
| 100 |
for m in st.session_state.messages
|
| 101 |
],
|
| 102 |
-
temperature=
|
| 103 |
stream=True,
|
| 104 |
max_tokens=3000,
|
| 105 |
)
|
| 106 |
response = st.write_stream(stream)
|
| 107 |
|
| 108 |
except Exception as e:
|
| 109 |
-
response = "π΅βπ«
|
| 110 |
st.write(response)
|
| 111 |
-
random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
|
| 112 |
-
st.image(random_dog_pick)
|
| 113 |
st.write("This was the error message:")
|
| 114 |
st.write(e)
|
| 115 |
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
from openai import OpenAI
|
| 4 |
import os
|
| 5 |
+
from dotenv import load_dotenv
|
|
|
|
| 6 |
load_dotenv()
|
| 7 |
|
| 8 |
+
# Initialize the OpenAI client
|
| 9 |
client = OpenAI(
|
| 10 |
base_url="https://api-inference.huggingface.co/v1",
|
| 11 |
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token
|
|
|
|
| 19 |
# Pull info about the model to display
|
| 20 |
model_info = {
|
| 21 |
"Meta-Llama-3-8B": {
|
| 22 |
+
'description': """The Llama (3) model is a **Large Language Model (LLM)** designed to assist with question and answer interactions.\n
|
| 23 |
+
\nThis model was created by Meta's AI team and has over 8 billion parameters.\n
|
| 24 |
+
**Training**: The model was fine-tuned on science textbooks from the NCERT curriculum using Docker AutoTrain to ensure it can provide relevant and accurate responses in the education domain.\n
|
| 25 |
+
**Purpose**: This version of Llama has been trained specifically for educational purposes, focusing on answering science-related queries in a clear and simple manner to help students and teachers alike.\n"""
|
| 26 |
}
|
| 27 |
}
|
| 28 |
|
| 29 |
+
# Reset the conversation
|
|
|
|
|
|
|
| 30 |
def reset_conversation():
|
|
|
|
| 31 |
st.session_state.conversation = []
|
| 32 |
st.session_state.messages = []
|
| 33 |
return None
|
| 34 |
|
| 35 |
+
# App title and description
|
| 36 |
+
st.title("Sci-Mom π©βπ« ")
|
| 37 |
+
st.subheader("AI chatbot for Solving your doubts π :)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
# Custom description for SciMom in the sidebar
|
| 40 |
+
st.sidebar.write("Built for my mom, with love β€οΈ. This model is pretrained with textbooks of Science NCERT.")
|
| 41 |
+
st.sidebar.write("Base-Model used: Meta Llama, trained using: Docker AutoTrain.")
|
| 42 |
|
| 43 |
+
# Add technical details in the sidebar
|
| 44 |
+
st.sidebar.markdown(model_info["Meta-Llama-3-8B"]['description'])
|
| 45 |
+
st.sidebar.markdown("*By Gokulnath β *")
|
| 46 |
|
| 47 |
+
# If model selection was needed (now removed)
|
| 48 |
+
selected_model = "Meta-Llama-3-8B" # Only one model remains
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
if "prev_option" not in st.session_state:
|
| 51 |
st.session_state.prev_option = selected_model
|
|
|
|
| 58 |
# Pull in the model we want to use
|
| 59 |
repo_id = model_links[selected_model]
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
# Initialize chat history
|
| 62 |
if "messages" not in st.session_state:
|
| 63 |
st.session_state.messages = []
|
|
|
|
| 68 |
st.markdown(message["content"])
|
| 69 |
|
| 70 |
# Accept user input
|
| 71 |
+
if prompt := st.chat_input("Ask Scimom!"):
|
| 72 |
# Display user message in chat message container
|
| 73 |
with st.chat_message("user"):
|
| 74 |
st.markdown(prompt)
|
|
|
|
| 83 |
{"role": m["role"], "content": m["content"]}
|
| 84 |
for m in st.session_state.messages
|
| 85 |
],
|
| 86 |
+
temperature=0.5, # Default temperature setting
|
| 87 |
stream=True,
|
| 88 |
max_tokens=3000,
|
| 89 |
)
|
| 90 |
response = st.write_stream(stream)
|
| 91 |
|
| 92 |
except Exception as e:
|
| 93 |
+
response = "π΅βπ« Something went wrong. Please try again later."
|
| 94 |
st.write(response)
|
|
|
|
|
|
|
| 95 |
st.write("This was the error message:")
|
| 96 |
st.write(e)
|
| 97 |
|