Spaces:
Runtime error
Runtime error
Upload 21 files
Browse files- .gitattributes +1 -0
- app.py +114 -0
- dpt/__init__.py +0 -0
- dpt/__pycache__/__init__.cpython-38.pyc +0 -0
- dpt/__pycache__/base_model.cpython-38.pyc +0 -0
- dpt/__pycache__/blocks.cpython-38.pyc +0 -0
- dpt/__pycache__/models.cpython-38.pyc +0 -0
- dpt/__pycache__/transforms.cpython-38.pyc +0 -0
- dpt/__pycache__/vit.cpython-38.pyc +0 -0
- dpt/base_model.py +16 -0
- dpt/blocks.py +383 -0
- dpt/midas_net.py +77 -0
- dpt/models.py +153 -0
- dpt/transforms.py +231 -0
- dpt/vit.py +576 -0
- examples/1.jpg +0 -0
- examples/2.jpg +3 -0
- requirements.txt +4 -0
- weights/.placeholder +0 -0
- weights/dpt_hybrid-midas-501f0c75.pt +3 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from torchvision.transforms import Compose
|
| 5 |
+
import cv2
|
| 6 |
+
from dpt.models import DPTDepthModel
|
| 7 |
+
from dpt.transforms import Resize, NormalizeImage, PrepareForNet
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
print("device: %s" % device)
|
| 12 |
+
default_models = {
|
| 13 |
+
"dpt_hybrid": "weights/dpt_hybrid-midas-501f0c75.pt",
|
| 14 |
+
}
|
| 15 |
+
torch.backends.cudnn.enabled = True
|
| 16 |
+
torch.backends.cudnn.benchmark = True
|
| 17 |
+
net_w = net_h = 384
|
| 18 |
+
model = DPTDepthModel(
|
| 19 |
+
path=default_models["dpt_hybrid"],
|
| 20 |
+
backbone="vitb_rn50_384",
|
| 21 |
+
non_negative=True,
|
| 22 |
+
enable_attention_hooks=False,
|
| 23 |
+
)
|
| 24 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 25 |
+
transform = Compose(
|
| 26 |
+
[
|
| 27 |
+
Resize(
|
| 28 |
+
net_w,
|
| 29 |
+
net_h,
|
| 30 |
+
resize_target=None,
|
| 31 |
+
keep_aspect_ratio=True,
|
| 32 |
+
ensure_multiple_of=32,
|
| 33 |
+
resize_method="minimal",
|
| 34 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
| 35 |
+
),
|
| 36 |
+
normalization,
|
| 37 |
+
PrepareForNet(),
|
| 38 |
+
]
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
model.eval()
|
| 42 |
+
model.to(device)
|
| 43 |
+
|
| 44 |
+
def write_depth(depth, bits=1, absolute_depth=False):
|
| 45 |
+
"""Write depth map to pfm and png file.
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
path (str): filepath without extension
|
| 49 |
+
depth (array): depth
|
| 50 |
+
"""
|
| 51 |
+
# write_pfm(path + ".pfm", depth.astype(np.float32))
|
| 52 |
+
|
| 53 |
+
if absolute_depth:
|
| 54 |
+
out = depth
|
| 55 |
+
else:
|
| 56 |
+
depth_min = depth.min()
|
| 57 |
+
depth_max = depth.max()
|
| 58 |
+
|
| 59 |
+
max_val = (2 ** (8 * bits)) - 1
|
| 60 |
+
|
| 61 |
+
if depth_max - depth_min > np.finfo("float").eps:
|
| 62 |
+
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
| 63 |
+
else:
|
| 64 |
+
out = np.zeros(depth.shape, dtype=depth.dtype)
|
| 65 |
+
|
| 66 |
+
if bits == 1:
|
| 67 |
+
return out.astype("uint8")
|
| 68 |
+
elif bits == 2:
|
| 69 |
+
return out.astype("uint16")
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def DPT(image):
|
| 73 |
+
img_input = transform({"image": image})["image"]
|
| 74 |
+
# compute
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
|
| 77 |
+
|
| 78 |
+
prediction = model.forward(sample)
|
| 79 |
+
prediction = (
|
| 80 |
+
torch.nn.functional.interpolate(
|
| 81 |
+
prediction.unsqueeze(1),
|
| 82 |
+
size=image.shape[:2],
|
| 83 |
+
mode="bicubic",
|
| 84 |
+
align_corners=False,
|
| 85 |
+
)
|
| 86 |
+
.squeeze()
|
| 87 |
+
.cpu()
|
| 88 |
+
.numpy()
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
depth_img = write_depth(prediction, bits=2)
|
| 92 |
+
return depth_img
|
| 93 |
+
|
| 94 |
+
title = " AISeed AI Application Demo "
|
| 95 |
+
description = "# A Demo of Deep Learning for Depth Estimation"
|
| 96 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
| 97 |
+
|
| 98 |
+
with gr.Blocks() as demo:
|
| 99 |
+
demo.title = title
|
| 100 |
+
gr.Markdown(description)
|
| 101 |
+
with gr.Row():
|
| 102 |
+
im = gr.Image(label="Input Image")
|
| 103 |
+
im_2 = gr.Image(label="Depth Image")
|
| 104 |
+
with gr.Column():
|
| 105 |
+
|
| 106 |
+
btn1 = gr.Button(value="Depth Estimator")
|
| 107 |
+
btn1.click(DPT, inputs=[im], outputs=[im_2])
|
| 108 |
+
gr.Examples(examples=example_list,
|
| 109 |
+
inputs=[im],
|
| 110 |
+
outputs=[im_2],
|
| 111 |
+
fn=DPT)
|
| 112 |
+
|
| 113 |
+
if __name__ == "__main__":
|
| 114 |
+
demo.launch()
|
dpt/__init__.py
ADDED
|
File without changes
|
dpt/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (147 Bytes). View file
|
|
|
dpt/__pycache__/base_model.cpython-38.pyc
ADDED
|
Binary file (673 Bytes). View file
|
|
|
dpt/__pycache__/blocks.cpython-38.pyc
ADDED
|
Binary file (6.72 kB). View file
|
|
|
dpt/__pycache__/models.cpython-38.pyc
ADDED
|
Binary file (3.82 kB). View file
|
|
|
dpt/__pycache__/transforms.cpython-38.pyc
ADDED
|
Binary file (5.68 kB). View file
|
|
|
dpt/__pycache__/vit.cpython-38.pyc
ADDED
|
Binary file (11.2 kB). View file
|
|
|
dpt/base_model.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class BaseModel(torch.nn.Module):
|
| 5 |
+
def load(self, path):
|
| 6 |
+
"""Load model from file.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
path (str): file path
|
| 10 |
+
"""
|
| 11 |
+
parameters = torch.load(path, map_location=torch.device("cpu"))
|
| 12 |
+
|
| 13 |
+
if "optimizer" in parameters:
|
| 14 |
+
parameters = parameters["model"]
|
| 15 |
+
|
| 16 |
+
self.load_state_dict(parameters)
|
dpt/blocks.py
ADDED
|
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from .vit import (
|
| 5 |
+
_make_pretrained_vitb_rn50_384,
|
| 6 |
+
_make_pretrained_vitl16_384,
|
| 7 |
+
_make_pretrained_vitb16_384,
|
| 8 |
+
forward_vit,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def _make_encoder(
|
| 13 |
+
backbone,
|
| 14 |
+
features,
|
| 15 |
+
use_pretrained,
|
| 16 |
+
groups=1,
|
| 17 |
+
expand=False,
|
| 18 |
+
exportable=True,
|
| 19 |
+
hooks=None,
|
| 20 |
+
use_vit_only=False,
|
| 21 |
+
use_readout="ignore",
|
| 22 |
+
enable_attention_hooks=False,
|
| 23 |
+
):
|
| 24 |
+
if backbone == "vitl16_384":
|
| 25 |
+
pretrained = _make_pretrained_vitl16_384(
|
| 26 |
+
use_pretrained,
|
| 27 |
+
hooks=hooks,
|
| 28 |
+
use_readout=use_readout,
|
| 29 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 30 |
+
)
|
| 31 |
+
scratch = _make_scratch(
|
| 32 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
| 33 |
+
) # ViT-L/16 - 85.0% Top1 (backbone)
|
| 34 |
+
elif backbone == "vitb_rn50_384":
|
| 35 |
+
pretrained = _make_pretrained_vitb_rn50_384(
|
| 36 |
+
use_pretrained,
|
| 37 |
+
hooks=hooks,
|
| 38 |
+
use_vit_only=use_vit_only,
|
| 39 |
+
use_readout=use_readout,
|
| 40 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 41 |
+
)
|
| 42 |
+
scratch = _make_scratch(
|
| 43 |
+
[256, 512, 768, 768], features, groups=groups, expand=expand
|
| 44 |
+
) # ViT-H/16 - 85.0% Top1 (backbone)
|
| 45 |
+
elif backbone == "vitb16_384":
|
| 46 |
+
pretrained = _make_pretrained_vitb16_384(
|
| 47 |
+
use_pretrained,
|
| 48 |
+
hooks=hooks,
|
| 49 |
+
use_readout=use_readout,
|
| 50 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 51 |
+
)
|
| 52 |
+
scratch = _make_scratch(
|
| 53 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
| 54 |
+
) # ViT-B/16 - 84.6% Top1 (backbone)
|
| 55 |
+
elif backbone == "resnext101_wsl":
|
| 56 |
+
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
| 57 |
+
scratch = _make_scratch(
|
| 58 |
+
[256, 512, 1024, 2048], features, groups=groups, expand=expand
|
| 59 |
+
) # efficientnet_lite3
|
| 60 |
+
else:
|
| 61 |
+
print(f"Backbone '{backbone}' not implemented")
|
| 62 |
+
assert False
|
| 63 |
+
|
| 64 |
+
return pretrained, scratch
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
| 68 |
+
scratch = nn.Module()
|
| 69 |
+
|
| 70 |
+
out_shape1 = out_shape
|
| 71 |
+
out_shape2 = out_shape
|
| 72 |
+
out_shape3 = out_shape
|
| 73 |
+
out_shape4 = out_shape
|
| 74 |
+
if expand == True:
|
| 75 |
+
out_shape1 = out_shape
|
| 76 |
+
out_shape2 = out_shape * 2
|
| 77 |
+
out_shape3 = out_shape * 4
|
| 78 |
+
out_shape4 = out_shape * 8
|
| 79 |
+
|
| 80 |
+
scratch.layer1_rn = nn.Conv2d(
|
| 81 |
+
in_shape[0],
|
| 82 |
+
out_shape1,
|
| 83 |
+
kernel_size=3,
|
| 84 |
+
stride=1,
|
| 85 |
+
padding=1,
|
| 86 |
+
bias=False,
|
| 87 |
+
groups=groups,
|
| 88 |
+
)
|
| 89 |
+
scratch.layer2_rn = nn.Conv2d(
|
| 90 |
+
in_shape[1],
|
| 91 |
+
out_shape2,
|
| 92 |
+
kernel_size=3,
|
| 93 |
+
stride=1,
|
| 94 |
+
padding=1,
|
| 95 |
+
bias=False,
|
| 96 |
+
groups=groups,
|
| 97 |
+
)
|
| 98 |
+
scratch.layer3_rn = nn.Conv2d(
|
| 99 |
+
in_shape[2],
|
| 100 |
+
out_shape3,
|
| 101 |
+
kernel_size=3,
|
| 102 |
+
stride=1,
|
| 103 |
+
padding=1,
|
| 104 |
+
bias=False,
|
| 105 |
+
groups=groups,
|
| 106 |
+
)
|
| 107 |
+
scratch.layer4_rn = nn.Conv2d(
|
| 108 |
+
in_shape[3],
|
| 109 |
+
out_shape4,
|
| 110 |
+
kernel_size=3,
|
| 111 |
+
stride=1,
|
| 112 |
+
padding=1,
|
| 113 |
+
bias=False,
|
| 114 |
+
groups=groups,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
return scratch
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def _make_resnet_backbone(resnet):
|
| 121 |
+
pretrained = nn.Module()
|
| 122 |
+
pretrained.layer1 = nn.Sequential(
|
| 123 |
+
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
pretrained.layer2 = resnet.layer2
|
| 127 |
+
pretrained.layer3 = resnet.layer3
|
| 128 |
+
pretrained.layer4 = resnet.layer4
|
| 129 |
+
|
| 130 |
+
return pretrained
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def _make_pretrained_resnext101_wsl(use_pretrained):
|
| 134 |
+
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
| 135 |
+
return _make_resnet_backbone(resnet)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class Interpolate(nn.Module):
|
| 139 |
+
"""Interpolation module."""
|
| 140 |
+
|
| 141 |
+
def __init__(self, scale_factor, mode, align_corners=False):
|
| 142 |
+
"""Init.
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
scale_factor (float): scaling
|
| 146 |
+
mode (str): interpolation mode
|
| 147 |
+
"""
|
| 148 |
+
super(Interpolate, self).__init__()
|
| 149 |
+
|
| 150 |
+
self.interp = nn.functional.interpolate
|
| 151 |
+
self.scale_factor = scale_factor
|
| 152 |
+
self.mode = mode
|
| 153 |
+
self.align_corners = align_corners
|
| 154 |
+
|
| 155 |
+
def forward(self, x):
|
| 156 |
+
"""Forward pass.
|
| 157 |
+
|
| 158 |
+
Args:
|
| 159 |
+
x (tensor): input
|
| 160 |
+
|
| 161 |
+
Returns:
|
| 162 |
+
tensor: interpolated data
|
| 163 |
+
"""
|
| 164 |
+
|
| 165 |
+
x = self.interp(
|
| 166 |
+
x,
|
| 167 |
+
scale_factor=self.scale_factor,
|
| 168 |
+
mode=self.mode,
|
| 169 |
+
align_corners=self.align_corners,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
return x
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class ResidualConvUnit(nn.Module):
|
| 176 |
+
"""Residual convolution module."""
|
| 177 |
+
|
| 178 |
+
def __init__(self, features):
|
| 179 |
+
"""Init.
|
| 180 |
+
|
| 181 |
+
Args:
|
| 182 |
+
features (int): number of features
|
| 183 |
+
"""
|
| 184 |
+
super().__init__()
|
| 185 |
+
|
| 186 |
+
self.conv1 = nn.Conv2d(
|
| 187 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
self.conv2 = nn.Conv2d(
|
| 191 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
self.relu = nn.ReLU(inplace=True)
|
| 195 |
+
|
| 196 |
+
def forward(self, x):
|
| 197 |
+
"""Forward pass.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
x (tensor): input
|
| 201 |
+
|
| 202 |
+
Returns:
|
| 203 |
+
tensor: output
|
| 204 |
+
"""
|
| 205 |
+
out = self.relu(x)
|
| 206 |
+
out = self.conv1(out)
|
| 207 |
+
out = self.relu(out)
|
| 208 |
+
out = self.conv2(out)
|
| 209 |
+
|
| 210 |
+
return out + x
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class FeatureFusionBlock(nn.Module):
|
| 214 |
+
"""Feature fusion block."""
|
| 215 |
+
|
| 216 |
+
def __init__(self, features):
|
| 217 |
+
"""Init.
|
| 218 |
+
|
| 219 |
+
Args:
|
| 220 |
+
features (int): number of features
|
| 221 |
+
"""
|
| 222 |
+
super(FeatureFusionBlock, self).__init__()
|
| 223 |
+
|
| 224 |
+
self.resConfUnit1 = ResidualConvUnit(features)
|
| 225 |
+
self.resConfUnit2 = ResidualConvUnit(features)
|
| 226 |
+
|
| 227 |
+
def forward(self, *xs):
|
| 228 |
+
"""Forward pass.
|
| 229 |
+
|
| 230 |
+
Returns:
|
| 231 |
+
tensor: output
|
| 232 |
+
"""
|
| 233 |
+
output = xs[0]
|
| 234 |
+
|
| 235 |
+
if len(xs) == 2:
|
| 236 |
+
output += self.resConfUnit1(xs[1])
|
| 237 |
+
|
| 238 |
+
output = self.resConfUnit2(output)
|
| 239 |
+
|
| 240 |
+
output = nn.functional.interpolate(
|
| 241 |
+
output, scale_factor=2, mode="bilinear", align_corners=True
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
return output
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
class ResidualConvUnit_custom(nn.Module):
|
| 248 |
+
"""Residual convolution module."""
|
| 249 |
+
|
| 250 |
+
def __init__(self, features, activation, bn):
|
| 251 |
+
"""Init.
|
| 252 |
+
|
| 253 |
+
Args:
|
| 254 |
+
features (int): number of features
|
| 255 |
+
"""
|
| 256 |
+
super().__init__()
|
| 257 |
+
|
| 258 |
+
self.bn = bn
|
| 259 |
+
|
| 260 |
+
self.groups = 1
|
| 261 |
+
|
| 262 |
+
self.conv1 = nn.Conv2d(
|
| 263 |
+
features,
|
| 264 |
+
features,
|
| 265 |
+
kernel_size=3,
|
| 266 |
+
stride=1,
|
| 267 |
+
padding=1,
|
| 268 |
+
bias=not self.bn,
|
| 269 |
+
groups=self.groups,
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
self.conv2 = nn.Conv2d(
|
| 273 |
+
features,
|
| 274 |
+
features,
|
| 275 |
+
kernel_size=3,
|
| 276 |
+
stride=1,
|
| 277 |
+
padding=1,
|
| 278 |
+
bias=not self.bn,
|
| 279 |
+
groups=self.groups,
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
if self.bn == True:
|
| 283 |
+
self.bn1 = nn.BatchNorm2d(features)
|
| 284 |
+
self.bn2 = nn.BatchNorm2d(features)
|
| 285 |
+
|
| 286 |
+
self.activation = activation
|
| 287 |
+
|
| 288 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
| 289 |
+
|
| 290 |
+
def forward(self, x):
|
| 291 |
+
"""Forward pass.
|
| 292 |
+
|
| 293 |
+
Args:
|
| 294 |
+
x (tensor): input
|
| 295 |
+
|
| 296 |
+
Returns:
|
| 297 |
+
tensor: output
|
| 298 |
+
"""
|
| 299 |
+
|
| 300 |
+
out = self.activation(x)
|
| 301 |
+
out = self.conv1(out)
|
| 302 |
+
if self.bn == True:
|
| 303 |
+
out = self.bn1(out)
|
| 304 |
+
|
| 305 |
+
out = self.activation(out)
|
| 306 |
+
out = self.conv2(out)
|
| 307 |
+
if self.bn == True:
|
| 308 |
+
out = self.bn2(out)
|
| 309 |
+
|
| 310 |
+
if self.groups > 1:
|
| 311 |
+
out = self.conv_merge(out)
|
| 312 |
+
|
| 313 |
+
return self.skip_add.add(out, x)
|
| 314 |
+
|
| 315 |
+
# return out + x
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
class FeatureFusionBlock_custom(nn.Module):
|
| 319 |
+
"""Feature fusion block."""
|
| 320 |
+
|
| 321 |
+
def __init__(
|
| 322 |
+
self,
|
| 323 |
+
features,
|
| 324 |
+
activation,
|
| 325 |
+
deconv=False,
|
| 326 |
+
bn=False,
|
| 327 |
+
expand=False,
|
| 328 |
+
align_corners=True,
|
| 329 |
+
):
|
| 330 |
+
"""Init.
|
| 331 |
+
|
| 332 |
+
Args:
|
| 333 |
+
features (int): number of features
|
| 334 |
+
"""
|
| 335 |
+
super(FeatureFusionBlock_custom, self).__init__()
|
| 336 |
+
|
| 337 |
+
self.deconv = deconv
|
| 338 |
+
self.align_corners = align_corners
|
| 339 |
+
|
| 340 |
+
self.groups = 1
|
| 341 |
+
|
| 342 |
+
self.expand = expand
|
| 343 |
+
out_features = features
|
| 344 |
+
if self.expand == True:
|
| 345 |
+
out_features = features // 2
|
| 346 |
+
|
| 347 |
+
self.out_conv = nn.Conv2d(
|
| 348 |
+
features,
|
| 349 |
+
out_features,
|
| 350 |
+
kernel_size=1,
|
| 351 |
+
stride=1,
|
| 352 |
+
padding=0,
|
| 353 |
+
bias=True,
|
| 354 |
+
groups=1,
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
| 358 |
+
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
| 359 |
+
|
| 360 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
| 361 |
+
|
| 362 |
+
def forward(self, *xs):
|
| 363 |
+
"""Forward pass.
|
| 364 |
+
|
| 365 |
+
Returns:
|
| 366 |
+
tensor: output
|
| 367 |
+
"""
|
| 368 |
+
output = xs[0]
|
| 369 |
+
|
| 370 |
+
if len(xs) == 2:
|
| 371 |
+
res = self.resConfUnit1(xs[1])
|
| 372 |
+
output = self.skip_add.add(output, res)
|
| 373 |
+
# output += res
|
| 374 |
+
|
| 375 |
+
output = self.resConfUnit2(output)
|
| 376 |
+
|
| 377 |
+
output = nn.functional.interpolate(
|
| 378 |
+
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
output = self.out_conv(output)
|
| 382 |
+
|
| 383 |
+
return output
|
dpt/midas_net.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
| 2 |
+
This file contains code that is adapted from
|
| 3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
| 4 |
+
"""
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
|
| 8 |
+
from .base_model import BaseModel
|
| 9 |
+
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class MidasNet_large(BaseModel):
|
| 13 |
+
"""Network for monocular depth estimation."""
|
| 14 |
+
|
| 15 |
+
def __init__(self, path=None, features=256, non_negative=True):
|
| 16 |
+
"""Init.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
path (str, optional): Path to saved model. Defaults to None.
|
| 20 |
+
features (int, optional): Number of features. Defaults to 256.
|
| 21 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
| 22 |
+
"""
|
| 23 |
+
print("Loading weights: ", path)
|
| 24 |
+
|
| 25 |
+
super(MidasNet_large, self).__init__()
|
| 26 |
+
|
| 27 |
+
use_pretrained = False if path is None else True
|
| 28 |
+
|
| 29 |
+
self.pretrained, self.scratch = _make_encoder(
|
| 30 |
+
backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
| 34 |
+
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
| 35 |
+
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
| 36 |
+
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
| 37 |
+
|
| 38 |
+
self.scratch.output_conv = nn.Sequential(
|
| 39 |
+
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
| 40 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
| 41 |
+
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
| 42 |
+
nn.ReLU(True),
|
| 43 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
| 44 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
if path:
|
| 48 |
+
self.load(path)
|
| 49 |
+
|
| 50 |
+
def forward(self, x):
|
| 51 |
+
"""Forward pass.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
x (tensor): input data (image)
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
tensor: depth
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
layer_1 = self.pretrained.layer1(x)
|
| 61 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
| 62 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
| 63 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
| 64 |
+
|
| 65 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
| 66 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
| 67 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
| 68 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
| 69 |
+
|
| 70 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
| 71 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
| 72 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
| 73 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
| 74 |
+
|
| 75 |
+
out = self.scratch.output_conv(path_1)
|
| 76 |
+
|
| 77 |
+
return torch.squeeze(out, dim=1)
|
dpt/models.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from .base_model import BaseModel
|
| 6 |
+
from .blocks import (
|
| 7 |
+
FeatureFusionBlock,
|
| 8 |
+
FeatureFusionBlock_custom,
|
| 9 |
+
Interpolate,
|
| 10 |
+
_make_encoder,
|
| 11 |
+
forward_vit,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def _make_fusion_block(features, use_bn):
|
| 16 |
+
return FeatureFusionBlock_custom(
|
| 17 |
+
features,
|
| 18 |
+
nn.ReLU(False),
|
| 19 |
+
deconv=False,
|
| 20 |
+
bn=use_bn,
|
| 21 |
+
expand=False,
|
| 22 |
+
align_corners=True,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class DPT(BaseModel):
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
head,
|
| 30 |
+
features=256,
|
| 31 |
+
backbone="vitb_rn50_384",
|
| 32 |
+
readout="project",
|
| 33 |
+
channels_last=False,
|
| 34 |
+
use_bn=False,
|
| 35 |
+
enable_attention_hooks=False,
|
| 36 |
+
):
|
| 37 |
+
|
| 38 |
+
super(DPT, self).__init__()
|
| 39 |
+
|
| 40 |
+
self.channels_last = channels_last
|
| 41 |
+
|
| 42 |
+
hooks = {
|
| 43 |
+
"vitb_rn50_384": [0, 1, 8, 11],
|
| 44 |
+
"vitb16_384": [2, 5, 8, 11],
|
| 45 |
+
"vitl16_384": [5, 11, 17, 23],
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
# Instantiate backbone and reassemble blocks
|
| 49 |
+
self.pretrained, self.scratch = _make_encoder(
|
| 50 |
+
backbone,
|
| 51 |
+
features,
|
| 52 |
+
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
| 53 |
+
groups=1,
|
| 54 |
+
expand=False,
|
| 55 |
+
exportable=False,
|
| 56 |
+
hooks=hooks[backbone],
|
| 57 |
+
use_readout=readout,
|
| 58 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
| 62 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
| 63 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
| 64 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
| 65 |
+
|
| 66 |
+
self.scratch.output_conv = head
|
| 67 |
+
|
| 68 |
+
def forward(self, x):
|
| 69 |
+
if self.channels_last == True:
|
| 70 |
+
x.contiguous(memory_format=torch.channels_last)
|
| 71 |
+
|
| 72 |
+
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
| 73 |
+
|
| 74 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
| 75 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
| 76 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
| 77 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
| 78 |
+
|
| 79 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
| 80 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
| 81 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
| 82 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
| 83 |
+
|
| 84 |
+
out = self.scratch.output_conv(path_1)
|
| 85 |
+
|
| 86 |
+
return out
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class DPTDepthModel(DPT):
|
| 90 |
+
def __init__(
|
| 91 |
+
self, path=None, non_negative=True, scale=1.0, shift=0.0, invert=False, **kwargs
|
| 92 |
+
):
|
| 93 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
| 94 |
+
|
| 95 |
+
self.scale = scale
|
| 96 |
+
self.shift = shift
|
| 97 |
+
self.invert = invert
|
| 98 |
+
|
| 99 |
+
head = nn.Sequential(
|
| 100 |
+
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
| 101 |
+
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
| 102 |
+
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
| 103 |
+
nn.ReLU(True),
|
| 104 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
| 105 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
| 106 |
+
nn.Identity(),
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
super().__init__(head, **kwargs)
|
| 110 |
+
|
| 111 |
+
if path is not None:
|
| 112 |
+
self.load(path)
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
inv_depth = super().forward(x).squeeze(dim=1)
|
| 116 |
+
|
| 117 |
+
if self.invert:
|
| 118 |
+
depth = self.scale * inv_depth + self.shift
|
| 119 |
+
depth[depth < 1e-8] = 1e-8
|
| 120 |
+
depth = 1.0 / depth
|
| 121 |
+
return depth
|
| 122 |
+
else:
|
| 123 |
+
return inv_depth
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
class DPTSegmentationModel(DPT):
|
| 127 |
+
def __init__(self, num_classes, path=None, **kwargs):
|
| 128 |
+
|
| 129 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
| 130 |
+
|
| 131 |
+
kwargs["use_bn"] = True
|
| 132 |
+
|
| 133 |
+
head = nn.Sequential(
|
| 134 |
+
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),
|
| 135 |
+
nn.BatchNorm2d(features),
|
| 136 |
+
nn.ReLU(True),
|
| 137 |
+
nn.Dropout(0.1, False),
|
| 138 |
+
nn.Conv2d(features, num_classes, kernel_size=1),
|
| 139 |
+
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
super().__init__(head, **kwargs)
|
| 143 |
+
|
| 144 |
+
self.auxlayer = nn.Sequential(
|
| 145 |
+
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),
|
| 146 |
+
nn.BatchNorm2d(features),
|
| 147 |
+
nn.ReLU(True),
|
| 148 |
+
nn.Dropout(0.1, False),
|
| 149 |
+
nn.Conv2d(features, num_classes, kernel_size=1),
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
if path is not None:
|
| 153 |
+
self.load(path)
|
dpt/transforms.py
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import math
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
| 7 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
sample (dict): sample
|
| 11 |
+
size (tuple): image size
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
tuple: new size
|
| 15 |
+
"""
|
| 16 |
+
shape = list(sample["disparity"].shape)
|
| 17 |
+
|
| 18 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
| 19 |
+
return sample
|
| 20 |
+
|
| 21 |
+
scale = [0, 0]
|
| 22 |
+
scale[0] = size[0] / shape[0]
|
| 23 |
+
scale[1] = size[1] / shape[1]
|
| 24 |
+
|
| 25 |
+
scale = max(scale)
|
| 26 |
+
|
| 27 |
+
shape[0] = math.ceil(scale * shape[0])
|
| 28 |
+
shape[1] = math.ceil(scale * shape[1])
|
| 29 |
+
|
| 30 |
+
# resize
|
| 31 |
+
sample["image"] = cv2.resize(
|
| 32 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
sample["disparity"] = cv2.resize(
|
| 36 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
| 37 |
+
)
|
| 38 |
+
sample["mask"] = cv2.resize(
|
| 39 |
+
sample["mask"].astype(np.float32),
|
| 40 |
+
tuple(shape[::-1]),
|
| 41 |
+
interpolation=cv2.INTER_NEAREST,
|
| 42 |
+
)
|
| 43 |
+
sample["mask"] = sample["mask"].astype(bool)
|
| 44 |
+
|
| 45 |
+
return tuple(shape)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class Resize(object):
|
| 49 |
+
"""Resize sample to given size (width, height)."""
|
| 50 |
+
|
| 51 |
+
def __init__(
|
| 52 |
+
self,
|
| 53 |
+
width,
|
| 54 |
+
height,
|
| 55 |
+
resize_target=True,
|
| 56 |
+
keep_aspect_ratio=False,
|
| 57 |
+
ensure_multiple_of=1,
|
| 58 |
+
resize_method="lower_bound",
|
| 59 |
+
image_interpolation_method=cv2.INTER_AREA,
|
| 60 |
+
):
|
| 61 |
+
"""Init.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
width (int): desired output width
|
| 65 |
+
height (int): desired output height
|
| 66 |
+
resize_target (bool, optional):
|
| 67 |
+
True: Resize the full sample (image, mask, target).
|
| 68 |
+
False: Resize image only.
|
| 69 |
+
Defaults to True.
|
| 70 |
+
keep_aspect_ratio (bool, optional):
|
| 71 |
+
True: Keep the aspect ratio of the input sample.
|
| 72 |
+
Output sample might not have the given width and height, and
|
| 73 |
+
resize behaviour depends on the parameter 'resize_method'.
|
| 74 |
+
Defaults to False.
|
| 75 |
+
ensure_multiple_of (int, optional):
|
| 76 |
+
Output width and height is constrained to be multiple of this parameter.
|
| 77 |
+
Defaults to 1.
|
| 78 |
+
resize_method (str, optional):
|
| 79 |
+
"lower_bound": Output will be at least as large as the given size.
|
| 80 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
| 81 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
| 82 |
+
Defaults to "lower_bound".
|
| 83 |
+
"""
|
| 84 |
+
self.__width = width
|
| 85 |
+
self.__height = height
|
| 86 |
+
|
| 87 |
+
self.__resize_target = resize_target
|
| 88 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
| 89 |
+
self.__multiple_of = ensure_multiple_of
|
| 90 |
+
self.__resize_method = resize_method
|
| 91 |
+
self.__image_interpolation_method = image_interpolation_method
|
| 92 |
+
|
| 93 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
| 94 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 95 |
+
|
| 96 |
+
if max_val is not None and y > max_val:
|
| 97 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 98 |
+
|
| 99 |
+
if y < min_val:
|
| 100 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
| 101 |
+
|
| 102 |
+
return y
|
| 103 |
+
|
| 104 |
+
def get_size(self, width, height):
|
| 105 |
+
# determine new height and width
|
| 106 |
+
scale_height = self.__height / height
|
| 107 |
+
scale_width = self.__width / width
|
| 108 |
+
|
| 109 |
+
if self.__keep_aspect_ratio:
|
| 110 |
+
if self.__resize_method == "lower_bound":
|
| 111 |
+
# scale such that output size is lower bound
|
| 112 |
+
if scale_width > scale_height:
|
| 113 |
+
# fit width
|
| 114 |
+
scale_height = scale_width
|
| 115 |
+
else:
|
| 116 |
+
# fit height
|
| 117 |
+
scale_width = scale_height
|
| 118 |
+
elif self.__resize_method == "upper_bound":
|
| 119 |
+
# scale such that output size is upper bound
|
| 120 |
+
if scale_width < scale_height:
|
| 121 |
+
# fit width
|
| 122 |
+
scale_height = scale_width
|
| 123 |
+
else:
|
| 124 |
+
# fit height
|
| 125 |
+
scale_width = scale_height
|
| 126 |
+
elif self.__resize_method == "minimal":
|
| 127 |
+
# scale as least as possbile
|
| 128 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
| 129 |
+
# fit width
|
| 130 |
+
scale_height = scale_width
|
| 131 |
+
else:
|
| 132 |
+
# fit height
|
| 133 |
+
scale_width = scale_height
|
| 134 |
+
else:
|
| 135 |
+
raise ValueError(
|
| 136 |
+
f"resize_method {self.__resize_method} not implemented"
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
if self.__resize_method == "lower_bound":
|
| 140 |
+
new_height = self.constrain_to_multiple_of(
|
| 141 |
+
scale_height * height, min_val=self.__height
|
| 142 |
+
)
|
| 143 |
+
new_width = self.constrain_to_multiple_of(
|
| 144 |
+
scale_width * width, min_val=self.__width
|
| 145 |
+
)
|
| 146 |
+
elif self.__resize_method == "upper_bound":
|
| 147 |
+
new_height = self.constrain_to_multiple_of(
|
| 148 |
+
scale_height * height, max_val=self.__height
|
| 149 |
+
)
|
| 150 |
+
new_width = self.constrain_to_multiple_of(
|
| 151 |
+
scale_width * width, max_val=self.__width
|
| 152 |
+
)
|
| 153 |
+
elif self.__resize_method == "minimal":
|
| 154 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
| 155 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
| 156 |
+
else:
|
| 157 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
| 158 |
+
|
| 159 |
+
return (new_width, new_height)
|
| 160 |
+
|
| 161 |
+
def __call__(self, sample):
|
| 162 |
+
width, height = self.get_size(
|
| 163 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# resize sample
|
| 167 |
+
sample["image"] = cv2.resize(
|
| 168 |
+
sample["image"],
|
| 169 |
+
(width, height),
|
| 170 |
+
interpolation=self.__image_interpolation_method,
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
if self.__resize_target:
|
| 174 |
+
if "disparity" in sample:
|
| 175 |
+
sample["disparity"] = cv2.resize(
|
| 176 |
+
sample["disparity"],
|
| 177 |
+
(width, height),
|
| 178 |
+
interpolation=cv2.INTER_NEAREST,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
if "depth" in sample:
|
| 182 |
+
sample["depth"] = cv2.resize(
|
| 183 |
+
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
sample["mask"] = cv2.resize(
|
| 187 |
+
sample["mask"].astype(np.float32),
|
| 188 |
+
(width, height),
|
| 189 |
+
interpolation=cv2.INTER_NEAREST,
|
| 190 |
+
)
|
| 191 |
+
sample["mask"] = sample["mask"].astype(bool)
|
| 192 |
+
|
| 193 |
+
return sample
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
class NormalizeImage(object):
|
| 197 |
+
"""Normlize image by given mean and std."""
|
| 198 |
+
|
| 199 |
+
def __init__(self, mean, std):
|
| 200 |
+
self.__mean = mean
|
| 201 |
+
self.__std = std
|
| 202 |
+
|
| 203 |
+
def __call__(self, sample):
|
| 204 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
| 205 |
+
|
| 206 |
+
return sample
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
class PrepareForNet(object):
|
| 210 |
+
"""Prepare sample for usage as network input."""
|
| 211 |
+
|
| 212 |
+
def __init__(self):
|
| 213 |
+
pass
|
| 214 |
+
|
| 215 |
+
def __call__(self, sample):
|
| 216 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
| 217 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
| 218 |
+
|
| 219 |
+
if "mask" in sample:
|
| 220 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
| 221 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
| 222 |
+
|
| 223 |
+
if "disparity" in sample:
|
| 224 |
+
disparity = sample["disparity"].astype(np.float32)
|
| 225 |
+
sample["disparity"] = np.ascontiguousarray(disparity)
|
| 226 |
+
|
| 227 |
+
if "depth" in sample:
|
| 228 |
+
depth = sample["depth"].astype(np.float32)
|
| 229 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
| 230 |
+
|
| 231 |
+
return sample
|
dpt/vit.py
ADDED
|
@@ -0,0 +1,576 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import timm
|
| 4 |
+
import types
|
| 5 |
+
import math
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
activations = {}
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_activation(name):
|
| 13 |
+
def hook(model, input, output):
|
| 14 |
+
activations[name] = output
|
| 15 |
+
|
| 16 |
+
return hook
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
attention = {}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_attention(name):
|
| 23 |
+
def hook(module, input, output):
|
| 24 |
+
x = input[0]
|
| 25 |
+
B, N, C = x.shape
|
| 26 |
+
qkv = (
|
| 27 |
+
module.qkv(x)
|
| 28 |
+
.reshape(B, N, 3, module.num_heads, C // module.num_heads)
|
| 29 |
+
.permute(2, 0, 3, 1, 4)
|
| 30 |
+
)
|
| 31 |
+
q, k, v = (
|
| 32 |
+
qkv[0],
|
| 33 |
+
qkv[1],
|
| 34 |
+
qkv[2],
|
| 35 |
+
) # make torchscript happy (cannot use tensor as tuple)
|
| 36 |
+
|
| 37 |
+
attn = (q @ k.transpose(-2, -1)) * module.scale
|
| 38 |
+
|
| 39 |
+
attn = attn.softmax(dim=-1) # [:,:,1,1:]
|
| 40 |
+
attention[name] = attn
|
| 41 |
+
|
| 42 |
+
return hook
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def get_mean_attention_map(attn, token, shape):
|
| 46 |
+
attn = attn[:, :, token, 1:]
|
| 47 |
+
attn = attn.unflatten(2, torch.Size([shape[2] // 16, shape[3] // 16])).float()
|
| 48 |
+
attn = torch.nn.functional.interpolate(
|
| 49 |
+
attn, size=shape[2:], mode="bicubic", align_corners=False
|
| 50 |
+
).squeeze(0)
|
| 51 |
+
|
| 52 |
+
all_attn = torch.mean(attn, 0)
|
| 53 |
+
|
| 54 |
+
return all_attn
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class Slice(nn.Module):
|
| 58 |
+
def __init__(self, start_index=1):
|
| 59 |
+
super(Slice, self).__init__()
|
| 60 |
+
self.start_index = start_index
|
| 61 |
+
|
| 62 |
+
def forward(self, x):
|
| 63 |
+
return x[:, self.start_index :]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class AddReadout(nn.Module):
|
| 67 |
+
def __init__(self, start_index=1):
|
| 68 |
+
super(AddReadout, self).__init__()
|
| 69 |
+
self.start_index = start_index
|
| 70 |
+
|
| 71 |
+
def forward(self, x):
|
| 72 |
+
if self.start_index == 2:
|
| 73 |
+
readout = (x[:, 0] + x[:, 1]) / 2
|
| 74 |
+
else:
|
| 75 |
+
readout = x[:, 0]
|
| 76 |
+
return x[:, self.start_index :] + readout.unsqueeze(1)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class ProjectReadout(nn.Module):
|
| 80 |
+
def __init__(self, in_features, start_index=1):
|
| 81 |
+
super(ProjectReadout, self).__init__()
|
| 82 |
+
self.start_index = start_index
|
| 83 |
+
|
| 84 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
| 85 |
+
|
| 86 |
+
def forward(self, x):
|
| 87 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
| 88 |
+
features = torch.cat((x[:, self.start_index :], readout), -1)
|
| 89 |
+
|
| 90 |
+
return self.project(features)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class Transpose(nn.Module):
|
| 94 |
+
def __init__(self, dim0, dim1):
|
| 95 |
+
super(Transpose, self).__init__()
|
| 96 |
+
self.dim0 = dim0
|
| 97 |
+
self.dim1 = dim1
|
| 98 |
+
|
| 99 |
+
def forward(self, x):
|
| 100 |
+
x = x.transpose(self.dim0, self.dim1)
|
| 101 |
+
return x
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def forward_vit(pretrained, x):
|
| 105 |
+
b, c, h, w = x.shape
|
| 106 |
+
|
| 107 |
+
glob = pretrained.model.forward_flex(x)
|
| 108 |
+
|
| 109 |
+
layer_1 = pretrained.activations["1"]
|
| 110 |
+
layer_2 = pretrained.activations["2"]
|
| 111 |
+
layer_3 = pretrained.activations["3"]
|
| 112 |
+
layer_4 = pretrained.activations["4"]
|
| 113 |
+
|
| 114 |
+
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
| 115 |
+
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
| 116 |
+
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
| 117 |
+
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
| 118 |
+
|
| 119 |
+
unflatten = nn.Sequential(
|
| 120 |
+
nn.Unflatten(
|
| 121 |
+
2,
|
| 122 |
+
torch.Size(
|
| 123 |
+
[
|
| 124 |
+
h // pretrained.model.patch_size[1],
|
| 125 |
+
w // pretrained.model.patch_size[0],
|
| 126 |
+
]
|
| 127 |
+
),
|
| 128 |
+
)
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
if layer_1.ndim == 3:
|
| 132 |
+
layer_1 = unflatten(layer_1)
|
| 133 |
+
if layer_2.ndim == 3:
|
| 134 |
+
layer_2 = unflatten(layer_2)
|
| 135 |
+
if layer_3.ndim == 3:
|
| 136 |
+
layer_3 = unflatten(layer_3)
|
| 137 |
+
if layer_4.ndim == 3:
|
| 138 |
+
layer_4 = unflatten(layer_4)
|
| 139 |
+
|
| 140 |
+
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
| 141 |
+
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
| 142 |
+
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
| 143 |
+
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
| 144 |
+
|
| 145 |
+
return layer_1, layer_2, layer_3, layer_4
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
| 149 |
+
posemb_tok, posemb_grid = (
|
| 150 |
+
posemb[:, : self.start_index],
|
| 151 |
+
posemb[0, self.start_index :],
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
| 155 |
+
|
| 156 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
| 157 |
+
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
| 158 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
| 159 |
+
|
| 160 |
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
| 161 |
+
|
| 162 |
+
return posemb
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def forward_flex(self, x):
|
| 166 |
+
b, c, h, w = x.shape
|
| 167 |
+
|
| 168 |
+
pos_embed = self._resize_pos_embed(
|
| 169 |
+
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
B = x.shape[0]
|
| 173 |
+
|
| 174 |
+
if hasattr(self.patch_embed, "backbone"):
|
| 175 |
+
x = self.patch_embed.backbone(x)
|
| 176 |
+
if isinstance(x, (list, tuple)):
|
| 177 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
| 178 |
+
|
| 179 |
+
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
| 180 |
+
|
| 181 |
+
if getattr(self, "dist_token", None) is not None:
|
| 182 |
+
cls_tokens = self.cls_token.expand(
|
| 183 |
+
B, -1, -1
|
| 184 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
| 185 |
+
dist_token = self.dist_token.expand(B, -1, -1)
|
| 186 |
+
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
| 187 |
+
else:
|
| 188 |
+
cls_tokens = self.cls_token.expand(
|
| 189 |
+
B, -1, -1
|
| 190 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
| 191 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
| 192 |
+
|
| 193 |
+
x = x + pos_embed
|
| 194 |
+
x = self.pos_drop(x)
|
| 195 |
+
|
| 196 |
+
for blk in self.blocks:
|
| 197 |
+
x = blk(x)
|
| 198 |
+
|
| 199 |
+
x = self.norm(x)
|
| 200 |
+
|
| 201 |
+
return x
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
| 205 |
+
if use_readout == "ignore":
|
| 206 |
+
readout_oper = [Slice(start_index)] * len(features)
|
| 207 |
+
elif use_readout == "add":
|
| 208 |
+
readout_oper = [AddReadout(start_index)] * len(features)
|
| 209 |
+
elif use_readout == "project":
|
| 210 |
+
readout_oper = [
|
| 211 |
+
ProjectReadout(vit_features, start_index) for out_feat in features
|
| 212 |
+
]
|
| 213 |
+
else:
|
| 214 |
+
assert (
|
| 215 |
+
False
|
| 216 |
+
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
| 217 |
+
|
| 218 |
+
return readout_oper
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _make_vit_b16_backbone(
|
| 222 |
+
model,
|
| 223 |
+
features=[96, 192, 384, 768],
|
| 224 |
+
size=[384, 384],
|
| 225 |
+
hooks=[2, 5, 8, 11],
|
| 226 |
+
vit_features=768,
|
| 227 |
+
use_readout="ignore",
|
| 228 |
+
start_index=1,
|
| 229 |
+
enable_attention_hooks=False,
|
| 230 |
+
):
|
| 231 |
+
pretrained = nn.Module()
|
| 232 |
+
|
| 233 |
+
pretrained.model = model
|
| 234 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
| 235 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
| 236 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
| 237 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
| 238 |
+
|
| 239 |
+
pretrained.activations = activations
|
| 240 |
+
|
| 241 |
+
if enable_attention_hooks:
|
| 242 |
+
pretrained.model.blocks[hooks[0]].attn.register_forward_hook(
|
| 243 |
+
get_attention("attn_1")
|
| 244 |
+
)
|
| 245 |
+
pretrained.model.blocks[hooks[1]].attn.register_forward_hook(
|
| 246 |
+
get_attention("attn_2")
|
| 247 |
+
)
|
| 248 |
+
pretrained.model.blocks[hooks[2]].attn.register_forward_hook(
|
| 249 |
+
get_attention("attn_3")
|
| 250 |
+
)
|
| 251 |
+
pretrained.model.blocks[hooks[3]].attn.register_forward_hook(
|
| 252 |
+
get_attention("attn_4")
|
| 253 |
+
)
|
| 254 |
+
pretrained.attention = attention
|
| 255 |
+
|
| 256 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
| 257 |
+
|
| 258 |
+
# 32, 48, 136, 384
|
| 259 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
| 260 |
+
readout_oper[0],
|
| 261 |
+
Transpose(1, 2),
|
| 262 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 263 |
+
nn.Conv2d(
|
| 264 |
+
in_channels=vit_features,
|
| 265 |
+
out_channels=features[0],
|
| 266 |
+
kernel_size=1,
|
| 267 |
+
stride=1,
|
| 268 |
+
padding=0,
|
| 269 |
+
),
|
| 270 |
+
nn.ConvTranspose2d(
|
| 271 |
+
in_channels=features[0],
|
| 272 |
+
out_channels=features[0],
|
| 273 |
+
kernel_size=4,
|
| 274 |
+
stride=4,
|
| 275 |
+
padding=0,
|
| 276 |
+
bias=True,
|
| 277 |
+
dilation=1,
|
| 278 |
+
groups=1,
|
| 279 |
+
),
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
| 283 |
+
readout_oper[1],
|
| 284 |
+
Transpose(1, 2),
|
| 285 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 286 |
+
nn.Conv2d(
|
| 287 |
+
in_channels=vit_features,
|
| 288 |
+
out_channels=features[1],
|
| 289 |
+
kernel_size=1,
|
| 290 |
+
stride=1,
|
| 291 |
+
padding=0,
|
| 292 |
+
),
|
| 293 |
+
nn.ConvTranspose2d(
|
| 294 |
+
in_channels=features[1],
|
| 295 |
+
out_channels=features[1],
|
| 296 |
+
kernel_size=2,
|
| 297 |
+
stride=2,
|
| 298 |
+
padding=0,
|
| 299 |
+
bias=True,
|
| 300 |
+
dilation=1,
|
| 301 |
+
groups=1,
|
| 302 |
+
),
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
| 306 |
+
readout_oper[2],
|
| 307 |
+
Transpose(1, 2),
|
| 308 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 309 |
+
nn.Conv2d(
|
| 310 |
+
in_channels=vit_features,
|
| 311 |
+
out_channels=features[2],
|
| 312 |
+
kernel_size=1,
|
| 313 |
+
stride=1,
|
| 314 |
+
padding=0,
|
| 315 |
+
),
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
| 319 |
+
readout_oper[3],
|
| 320 |
+
Transpose(1, 2),
|
| 321 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 322 |
+
nn.Conv2d(
|
| 323 |
+
in_channels=vit_features,
|
| 324 |
+
out_channels=features[3],
|
| 325 |
+
kernel_size=1,
|
| 326 |
+
stride=1,
|
| 327 |
+
padding=0,
|
| 328 |
+
),
|
| 329 |
+
nn.Conv2d(
|
| 330 |
+
in_channels=features[3],
|
| 331 |
+
out_channels=features[3],
|
| 332 |
+
kernel_size=3,
|
| 333 |
+
stride=2,
|
| 334 |
+
padding=1,
|
| 335 |
+
),
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
pretrained.model.start_index = start_index
|
| 339 |
+
pretrained.model.patch_size = [16, 16]
|
| 340 |
+
|
| 341 |
+
# We inject this function into the VisionTransformer instances so that
|
| 342 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
| 343 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
| 344 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
| 345 |
+
_resize_pos_embed, pretrained.model
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
return pretrained
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
def _make_vit_b_rn50_backbone(
|
| 352 |
+
model,
|
| 353 |
+
features=[256, 512, 768, 768],
|
| 354 |
+
size=[384, 384],
|
| 355 |
+
hooks=[0, 1, 8, 11],
|
| 356 |
+
vit_features=768,
|
| 357 |
+
use_vit_only=False,
|
| 358 |
+
use_readout="ignore",
|
| 359 |
+
start_index=1,
|
| 360 |
+
enable_attention_hooks=False,
|
| 361 |
+
):
|
| 362 |
+
pretrained = nn.Module()
|
| 363 |
+
|
| 364 |
+
pretrained.model = model
|
| 365 |
+
|
| 366 |
+
if use_vit_only == True:
|
| 367 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
| 368 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
| 369 |
+
else:
|
| 370 |
+
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
| 371 |
+
get_activation("1")
|
| 372 |
+
)
|
| 373 |
+
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
| 374 |
+
get_activation("2")
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
| 378 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
| 379 |
+
|
| 380 |
+
if enable_attention_hooks:
|
| 381 |
+
pretrained.model.blocks[2].attn.register_forward_hook(get_attention("attn_1"))
|
| 382 |
+
pretrained.model.blocks[5].attn.register_forward_hook(get_attention("attn_2"))
|
| 383 |
+
pretrained.model.blocks[8].attn.register_forward_hook(get_attention("attn_3"))
|
| 384 |
+
pretrained.model.blocks[11].attn.register_forward_hook(get_attention("attn_4"))
|
| 385 |
+
pretrained.attention = attention
|
| 386 |
+
|
| 387 |
+
pretrained.activations = activations
|
| 388 |
+
|
| 389 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
| 390 |
+
|
| 391 |
+
if use_vit_only == True:
|
| 392 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
| 393 |
+
readout_oper[0],
|
| 394 |
+
Transpose(1, 2),
|
| 395 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 396 |
+
nn.Conv2d(
|
| 397 |
+
in_channels=vit_features,
|
| 398 |
+
out_channels=features[0],
|
| 399 |
+
kernel_size=1,
|
| 400 |
+
stride=1,
|
| 401 |
+
padding=0,
|
| 402 |
+
),
|
| 403 |
+
nn.ConvTranspose2d(
|
| 404 |
+
in_channels=features[0],
|
| 405 |
+
out_channels=features[0],
|
| 406 |
+
kernel_size=4,
|
| 407 |
+
stride=4,
|
| 408 |
+
padding=0,
|
| 409 |
+
bias=True,
|
| 410 |
+
dilation=1,
|
| 411 |
+
groups=1,
|
| 412 |
+
),
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
| 416 |
+
readout_oper[1],
|
| 417 |
+
Transpose(1, 2),
|
| 418 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 419 |
+
nn.Conv2d(
|
| 420 |
+
in_channels=vit_features,
|
| 421 |
+
out_channels=features[1],
|
| 422 |
+
kernel_size=1,
|
| 423 |
+
stride=1,
|
| 424 |
+
padding=0,
|
| 425 |
+
),
|
| 426 |
+
nn.ConvTranspose2d(
|
| 427 |
+
in_channels=features[1],
|
| 428 |
+
out_channels=features[1],
|
| 429 |
+
kernel_size=2,
|
| 430 |
+
stride=2,
|
| 431 |
+
padding=0,
|
| 432 |
+
bias=True,
|
| 433 |
+
dilation=1,
|
| 434 |
+
groups=1,
|
| 435 |
+
),
|
| 436 |
+
)
|
| 437 |
+
else:
|
| 438 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
| 439 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
| 440 |
+
)
|
| 441 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
| 442 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
| 446 |
+
readout_oper[2],
|
| 447 |
+
Transpose(1, 2),
|
| 448 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 449 |
+
nn.Conv2d(
|
| 450 |
+
in_channels=vit_features,
|
| 451 |
+
out_channels=features[2],
|
| 452 |
+
kernel_size=1,
|
| 453 |
+
stride=1,
|
| 454 |
+
padding=0,
|
| 455 |
+
),
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
| 459 |
+
readout_oper[3],
|
| 460 |
+
Transpose(1, 2),
|
| 461 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 462 |
+
nn.Conv2d(
|
| 463 |
+
in_channels=vit_features,
|
| 464 |
+
out_channels=features[3],
|
| 465 |
+
kernel_size=1,
|
| 466 |
+
stride=1,
|
| 467 |
+
padding=0,
|
| 468 |
+
),
|
| 469 |
+
nn.Conv2d(
|
| 470 |
+
in_channels=features[3],
|
| 471 |
+
out_channels=features[3],
|
| 472 |
+
kernel_size=3,
|
| 473 |
+
stride=2,
|
| 474 |
+
padding=1,
|
| 475 |
+
),
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
pretrained.model.start_index = start_index
|
| 479 |
+
pretrained.model.patch_size = [16, 16]
|
| 480 |
+
|
| 481 |
+
# We inject this function into the VisionTransformer instances so that
|
| 482 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
| 483 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
| 484 |
+
|
| 485 |
+
# We inject this function into the VisionTransformer instances so that
|
| 486 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
| 487 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
| 488 |
+
_resize_pos_embed, pretrained.model
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
return pretrained
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
def _make_pretrained_vitb_rn50_384(
|
| 495 |
+
pretrained,
|
| 496 |
+
use_readout="ignore",
|
| 497 |
+
hooks=None,
|
| 498 |
+
use_vit_only=False,
|
| 499 |
+
enable_attention_hooks=False,
|
| 500 |
+
):
|
| 501 |
+
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
| 502 |
+
|
| 503 |
+
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
| 504 |
+
return _make_vit_b_rn50_backbone(
|
| 505 |
+
model,
|
| 506 |
+
features=[256, 512, 768, 768],
|
| 507 |
+
size=[384, 384],
|
| 508 |
+
hooks=hooks,
|
| 509 |
+
use_vit_only=use_vit_only,
|
| 510 |
+
use_readout=use_readout,
|
| 511 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
def _make_pretrained_vitl16_384(
|
| 516 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
| 517 |
+
):
|
| 518 |
+
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
| 519 |
+
|
| 520 |
+
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
| 521 |
+
return _make_vit_b16_backbone(
|
| 522 |
+
model,
|
| 523 |
+
features=[256, 512, 1024, 1024],
|
| 524 |
+
hooks=hooks,
|
| 525 |
+
vit_features=1024,
|
| 526 |
+
use_readout=use_readout,
|
| 527 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
def _make_pretrained_vitb16_384(
|
| 532 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
| 533 |
+
):
|
| 534 |
+
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
| 535 |
+
|
| 536 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 537 |
+
return _make_vit_b16_backbone(
|
| 538 |
+
model,
|
| 539 |
+
features=[96, 192, 384, 768],
|
| 540 |
+
hooks=hooks,
|
| 541 |
+
use_readout=use_readout,
|
| 542 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
def _make_pretrained_deitb16_384(
|
| 547 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
| 548 |
+
):
|
| 549 |
+
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
| 550 |
+
|
| 551 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 552 |
+
return _make_vit_b16_backbone(
|
| 553 |
+
model,
|
| 554 |
+
features=[96, 192, 384, 768],
|
| 555 |
+
hooks=hooks,
|
| 556 |
+
use_readout=use_readout,
|
| 557 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
def _make_pretrained_deitb16_distil_384(
|
| 562 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
| 563 |
+
):
|
| 564 |
+
model = timm.create_model(
|
| 565 |
+
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
| 566 |
+
)
|
| 567 |
+
|
| 568 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 569 |
+
return _make_vit_b16_backbone(
|
| 570 |
+
model,
|
| 571 |
+
features=[96, 192, 384, 768],
|
| 572 |
+
hooks=hooks,
|
| 573 |
+
use_readout=use_readout,
|
| 574 |
+
start_index=2,
|
| 575 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 576 |
+
)
|
examples/1.jpg
ADDED
|
examples/2.jpg
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==1.8.1
|
| 2 |
+
torchvision==0.9.1
|
| 3 |
+
opencv-python==4.5.2.54
|
| 4 |
+
timm==0.4.5
|
weights/.placeholder
ADDED
|
File without changes
|
weights/dpt_hybrid-midas-501f0c75.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:501f0c75b3bca7daec6b3682c5054c09b366765aef6fa3a09d03a5cb4b230853
|
| 3 |
+
size 492757791
|