# Multi-LoRA Image Editing Implementation (Simplified) ## Overview This implementation provides a simplified multi-LoRA (Low-Rank Adaptation) system for the Qwen-Image-Edit application, focusing on **Lightning LoRA always active as the base optimization** with only **Object Remover** as an additional LoRA for testing. ## Architecture ### Core Components 1. **LoRAManager** (`lora_manager.py`) - Centralized management of multiple LoRA adapters - Registry system for storing LoRA configurations - Dynamic loading and fusion capabilities - Memory management and cleanup 2. **LoRA Configuration** (`app.py`) - Centralized `LORA_CONFIG` dictionary - Lightning LoRA configured as always-loaded base - Simplified to Object Remover for focused testing 3. **Dynamic UI System** (`app.py`) - Conditional component visibility based on LoRA selection - Lightning LoRA status indication - Type-specific UI adaptations (edit vs base) - Real-time interface updates ## ⚡ Lightning LoRA Always-On Architecture ### Core Principle **Lightning LoRA is always loaded as the base model** for fast 4-step generation, regardless of which other LoRA is selected. This provides: - **Consistent Performance**: Always-on 4-step generation - **Enhanced Speed**: Lightning's optimization applies to all operations - **Multi-LoRA Fusion**: Combine Lightning speed with Object Remover capabilities ### Implementation Details #### 1. Always-On Loading ```python # Lightning LoRA is loaded first and always remains active LIGHTNING_LORA_NAME = "Lightning (4-Step)" print(f"Loading always-active Lightning LoRA: {LIGHTNING_LORA_NAME}") lightning_lora_path = hf_hub_download( repo_id=lightning_config["repo_id"], filename=lightning_config["filename"] ) lora_manager.register_lora(LIGHTNING_LORA_NAME, lightning_lora_path, **lightning_config) lora_manager.configure_lora(LIGHTNING_LORA_NAME, { "description": lightning_config["description"], "is_base": True }) # Load Lightning LoRA and keep it always active lora_manager.load_lora(LIGHTNING_LORA_NAME) lora_manager.fuse_lora(LIGHTNING_LORA_NAME) ``` #### 2. Multi-LoRA Combination ```python def load_and_fuse_additional_lora(lora_name): """ Load an additional LoRA while keeping Lightning LoRA always active. This enables combining Lightning's speed with Object Remover capabilities. """ # Always keep Lightning LoRA loaded # Load additional LoRA without resetting to base state if config["method"] == "standard": print("Using standard loading method...") # Load additional LoRA without fusing (to preserve Lightning) pipe.load_lora_weights(lora_path, adapter_names=[lora_name]) # Set both adapters as active pipe.set_adapters([LIGHTNING_LORA_NAME, lora_name]) print(f"Lightning + {lora_name} now active.") ``` #### 3. Lightning Preservation in Inference ```python def infer(lora_name, ...): """Main inference function with Lightning always active""" # Load additional LoRA while keeping Lightning active load_and_fuse_lora(lora_name) print("--- Running Inference ---") print(f"LoRA: {lora_name} (with Lightning always active)") # Generate with Lightning + additional LoRA result_image = pipe( image=image_for_pipeline, prompt=final_prompt, num_inference_steps=int(num_inference_steps), # ... other parameters ).images[0] # Don't unfuse Lightning - keep it active for next inference if lora_name != LIGHTNING_LORA_NAME: pipe.disable_adapters() # Disable additional LoRA but keep Lightning ``` ## Simplified LoRA Configuration ### Current Supported LoRAs | LoRA Name | Type | Method | Always-On | Description | |-----------|------|--------|-----------|-------------| | **⚡ Lightning (4-Step)** | base | standard | ✅ **Always** | Fast 4-step generation - always active | | **None** | edit | none | ❌ | Base model with Lightning optimization | | **Object Remover** | edit | standard | ⚡ Lightning+ | Removes objects from an image while maintaining background consistency | ### Lightning + Object Remover Combination **Lightning + Object Remover**: Fast object removal with 4-step generation optimization ### LoRA Type Classifications - **Base LoRA**: Lightning (always loaded, always active) - **Edit LoRAs**: Object Remover (requires input images, uses standard fusion) - **None**: Base model with Lightning optimization ## Key Features ### 1. Dynamic UI Components The system automatically adapts the user interface and shows Lightning status: ```python def on_lora_change(lora_name): """Dynamic UI component visibility handler""" config = LORA_CONFIG[lora_name] is_style_lora = config["type"] == "style" # Lightning LoRA info lightning_info = "⚡ **Lightning LoRA always active** - Fast 4-step generation enabled" return { lora_description: gr.Markdown(visible=True, value=f"**{lightning_info}** \n\n**Description:** {config['description']}"), input_image_box: gr.Image(visible=not is_style_lora, type="pil"), style_image_box: gr.Image(visible=is_style_lora, type="pil"), prompt_box: gr.Textbox(visible=(config["prompt_template"] != "change the face to face segmentation mask")) } ``` ### 2. Always-On Lightning Performance ```python # Lightning configuration as always-loaded base "Lightning (4-Step)": { "repo_id": "lightx2v/Qwen-Image-Lightning", "filename": "Qwen-Image-Lightning-4steps-V2.0.safetensors", "type": "base", "method": "standard", "always_load": True, "prompt_template": "{prompt}", "description": "Fast 4-step generation LoRA - always loaded as base optimization.", } ``` ### 3. Simplified Multi-LoRA Fusion - **Lightning Base**: Always loaded, always active - **Object Remover**: Loaded alongside Lightning using standard fusion - **None**: Lightning-only operation ### 4. Memory Management with Lightning - Lightning LoRA remains loaded throughout session - Object Remover LoRA loaded/unloaded as needed - GPU memory optimized for Lightning + one additional LoRA - Automatic cleanup of non-Lightning adapters ### 5. Prompt Template System Each LoRA has a custom prompt template (Lightning provides base 4-step generation): ```python "Object Remover": { "prompt_template": "Remove {prompt}", "type": "edit" } ``` ## Usage ### Basic Usage with Always-On Lightning 1. **Lightning is Always Active**: No selection needed - Lightning runs all operations 2. **Select Additional LoRA**: Choose "Object Remover" to combine with Lightning 3. **Upload Images**: Upload input image to edit 4. **Enter Prompt**: Describe the object to remove 5. **Configure Settings**: Adjust advanced parameters (4-step generation always enabled) 6. **Generate**: Click "Generate!" to process with Lightning optimization ### Object Remover Usage 1. **Select "Object Remover"** from the dropdown 2. **Upload Input Image**: The image containing the object to remove 3. **Enter Prompt**: Describe the object to remove (e.g., "person", "car", "tree") 4. **Generate**: Lightning + Object Remover will remove the specified object ### Advanced Configuration #### Adding New LoRAs (with Lightning Always-On) 1. **Add to LORA_CONFIG**: ```python "Custom LoRA": { "repo_id": "username/custom-lora", "filename": "custom.safetensors", "type": "edit", # or "style" "method": "standard", # or "manual_fuse" "prompt_template": "Custom instruction: {prompt}", "description": "Description of the LoRA capabilities" } ``` 2. **Register with LoRAManager**: ```python lora_path = hf_hub_download(repo_id=config["repo_id"], filename=config["filename"]) lora_manager.register_lora("Custom LoRA", lora_path, **config) ``` 3. **Lightning + Custom LoRA**: Automatically combines with always-on Lightning ## Technical Implementation ### Lightning Always-On Process 1. **Initialization**: Load Lightning LoRA first 2. **Fusion**: Fuse Lightning weights permanently 3. **Persistence**: Keep Lightning active throughout session 4. **Combination**: Load Object Remover alongside Lightning 5. **Preservation**: Never unload Lightning LoRA ### Lightning Loading Process ```python def load_and_fuse_lora(lora_name): """Legacy function for backward compatibility""" if lora_name == LIGHTNING_LORA_NAME: # Lightning is already loaded, just ensure it's active print("Lightning LoRA is already active.") pipe.set_adapters([LIGHTNING_LORA_NAME]) return load_and_fuse_additional_lora(lora_name) ``` ### Memory Management with Lightning ```python # Don't unfuse Lightning - keep it active for next inference if lora_name != LIGHTNING_LORA_NAME: pipe.disable_adapters() # Disable additional LoRA but keep Lightning gc.collect() torch.cuda.empty_cache() ``` ## Testing and Validation ### Validation Scripts - **test_lora_logic.py**: Validates implementation logic without dependencies - **test_lightning_always_on.py**: Validates Lightning always-on functionality - **test_lora_implementation.py**: Full integration testing (requires PyTorch) ### Lightning Always-On Test Coverage ✅ **Lightning LoRA configured as always-loaded base** ✅ **Lightning LoRA loaded and fused on startup** ✅ **Inference preserves Lightning LoRA state** ✅ **Multi-LoRA combination supported** ✅ **UI indicates Lightning always active** ✅ **Proper loading sequence implemented** ### Object Remover Testing ✅ **Object Remover loads alongside Lightning** ✅ **Lightning + Object Remover combination works** ✅ **Prompt template "Remove {prompt}" functions correctly** ✅ **Memory management for Lightning + Object Remover** ## Performance Considerations ### Lightning Always-On Benefits - **Consistent Speed**: All operations use 4-step generation - **Reduced Latency**: No loading time for Lightning between requests - **Enhanced Performance**: Lightning optimization applies to Object Remover - **Memory Efficiency**: Lightning stays in memory, Object Remover loaded as needed ### Speed Optimization - **4-Step Generation**: Lightning provides ultra-fast inference - **AOT Compilation**: Ahead-of-time compilation with Lightning active - **Adapter Combination**: Lightning + Object Remover for optimal results - **Optimized Attention Processors**: FA3 attention with Lightning ### Memory Optimization - Lightning LoRA always in memory (base memory usage) - Object Remover LoRA loaded on-demand - Efficient adapter switching - GPU memory management for multiple adapters ## Troubleshooting ### Common Issues 1. **Lightning Not Loading** - Check HuggingFace Hub connectivity for Lightning repo - Verify `lightx2v/Qwen-Image-Lightning` repository exists - Ensure sufficient GPU memory for Lightning LoRA 2. **Slow Performance (Lightning Not Active)** - Check Lightning LoRA is loaded: Look for "Lightning LoRA is already active" - Verify adapter status: `pipe.get_active_adapters()` - Ensure Lightning is not being disabled 3. **Object Remover Issues** - Check Object Remover loading: Look for "Lightning + Object Remover now active" - Verify prompt format: Should be "Remove {object}" - Monitor memory usage for Lightning + Object Remover ### Debug Mode Enable debug logging to see Lightning always-on status: ```python import logging logging.basicConfig(level=logging.DEBUG) # Check Lightning status print(f"Lightning active: {LIGHTNING_LORA_NAME in pipe.get_active_adapters()}") print(f"All active adapters: {pipe.get_active_adapters()}") ``` ## Future Enhancements ### Planned Features 1. **Additional LoRAs**: Add more LoRAs after successful Object Remover testing 2. **LoRA Blending**: Advanced blending of multiple LoRAs with Lightning 3. **Lightning Optimization**: Dynamic Lightning parameter adjustment 4. **Performance Monitoring**: Real-time Lightning performance metrics 5. **Batch Processing**: Process multiple images with Lightning always-on ### Extension Points - Custom Lightning optimization strategies - Multiple base LoRAs (beyond Lightning) - Advanced multi-LoRA combination algorithms - Lightning performance profiling ## Simplified Configuration Benefits ### Focused Testing - **Reduced Complexity**: Only Lightning + Object Remover to test - **Clear Validation**: Easy to verify Lightning always-on functionality - **Debugging**: Simplified troubleshooting with fewer variables - **Performance**: Clear performance benefits of Lightning always-on ### Risk Mitigation - **Gradual Rollout**: Test one LoRA before adding more - **Validation**: Ensure Lightning + LoRA combination works correctly - **Memory Management**: Verify memory usage with Lightning + one LoRA - **User Experience**: Validate simplified UI with fewer options ## References - [Qwen-Image-Edit Model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) - [Lightning LoRA Repository](https://huggingface.co/lightx2v/Qwen-Image-Lightning) - [Object Remover LoRA Repository](https://huggingface.co/valiantcat/Qwen-Image-Edit-Remover-General-LoRA) - [Diffusers LoRA Documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) - [PEFT Library](https://github.com/huggingface/peft) - [HuggingFace Spaces Pattern](https://huggingface.co/spaces) ## License This implementation follows the same license as the original Qwen-Image-Edit project.