Spaces:
Sleeping
Sleeping
File size: 14,037 Bytes
cd9d7a2 4c2f227 aaf9541 cd9d7a2 4c2f227 cd9d7a2 4c2f227 baab0a8 4c2f227 aaf9541 4c2f227 eb17519 4c2f227 baab0a8 4c2f227 baab0a8 4c2f227 eb17519 4c2f227 eb17519 4c2f227 aaf9541 4c2f227 aaf9541 4c2f227 aaf9541 4c2f227 f3cb7aa 4c2f227 f8b59bb 4c2f227 f8b59bb 4c2f227 aaf9541 4c2f227 aaf9541 4c2f227 baab0a8 cd9d7a2 4c2f227 aaf9541 4c2f227 75f421f 4c2f227 cd9d7a2 4c2f227 cd9d7a2 baab0a8 4c2f227 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# app.py
# CodexFlow / GVBDMS v3 β’ January 11, 2026
# Persistent provenance ledger + first gentle IRE influence (coherence check + Ξ© smoothing)
import gradio as gr
import requests
import time
import json
import hashlib
import sqlite3
import numpy as np
from typing import Dict, Any, List, Optional, Tuple
from collections import deque
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# CONFIGURATION
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
DB_PATH = "codexflow_gvbdms_v3.db"
WORLD_BANK_BASE = "https://api.worldbank.org/v2"
DEFAULT_YEAR = "2023"
INDICATORS = {
"GDP": "NY.GDP.MKTP.CD",
"INFLATION": "FP.CPI.TOTL.ZG",
"POPULATION": "SP.POP.TOTL",
}
# Very simple toy intent anchor for first coherence check
INTENT_ANCHOR = {"stability": 0.92, "transparency": 0.88}
COHERENCE_THRESHOLD = 0.65 # records below this are refused
OMEGA_MEMORY = deque(maxlen=8) # very light causal smoothing buffer
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# DATABASE LAYER
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def init_db():
with sqlite3.connect(DB_PATH) as con:
cur = con.cursor()
cur.execute("""
CREATE TABLE IF NOT EXISTS records (
id INTEGER PRIMARY KEY AUTOINCREMENT,
ts REAL NOT NULL,
hash TEXT UNIQUE NOT NULL,
prev_hash TEXT NOT NULL,
schema TEXT NOT NULL,
country TEXT NOT NULL,
source TEXT NOT NULL,
reliability REAL NOT NULL,
latency_s REAL NOT NULL,
payload_json TEXT NOT NULL,
metadata_json TEXT NOT NULL,
coherence_score REAL,
bytes INTEGER NOT NULL,
entropy_proxy REAL NOT NULL
)
""")
cur.execute("CREATE INDEX IF NOT EXISTS idx_schema_country ON records(schema, country)")
cur.execute("CREATE INDEX IF NOT EXISTS idx_ts ON records(ts)")
print("Database initialized.")
init_db()
def get_tip_hash() -> str:
with sqlite3.connect(DB_PATH) as con:
cur = con.cursor()
cur.execute("SELECT hash FROM records ORDER BY id DESC LIMIT 1")
row = cur.fetchone()
return row[0] if row else "GENESIS"
def insert_record(rec: Dict) -> bool:
try:
with sqlite3.connect(DB_PATH) as con:
cur = con.cursor()
cur.execute("""
INSERT INTO records (
ts, hash, prev_hash, schema, country, source, reliability, latency_s,
payload_json, metadata_json, coherence_score, bytes, entropy_proxy
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
rec["ts"], rec["hash"], rec["prev_hash"], rec["schema"], rec["country"],
rec["source"], rec["reliability"], rec["latency_s"],
rec["payload_json"], rec["metadata_json"], rec.get("coherence_score"),
rec["bytes"], rec["entropy_proxy"]
))
return True
except sqlite3.IntegrityError:
return False # duplicate hash
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# UTILITIES
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def canonical_bytes(obj: Any) -> bytes:
return json.dumps(obj, sort_keys=True, separators=(",", ":")).encode('utf-8')
def compute_bit_stats(payload: Dict) -> Tuple[int, float]:
b = canonical_bytes(payload)
n = len(b)
return n, round(len(set(b)) / max(n, 1), 6)
def hash_chain(payload: Dict, prev: str) -> str:
return hashlib.sha256(canonical_bytes({"payload": payload, "prev": prev})).hexdigest()
def toy_coherence_score(values: Dict[str, float]) -> float:
"""Extremely simple first coherence proxy against intent anchor"""
scores = []
for k, target in INTENT_ANCHOR.items():
v = values.get(k)
if v is not None:
diff = abs(v - target) / max(abs(target), 0.01)
scores.append(max(0.0, 1.0 - min(1.0, diff)))
return round(np.mean(scores) if scores else 0.5, 4)
def omega_smooth(key: str, value: float) -> float:
if not OMEGA_MEMORY:
OMEGA_MEMORY.append({key: value})
return value
prev = OMEGA_MEMORY[-1].get(key, value)
smoothed = 0.25 * value + 0.75 * prev
OMEGA_MEMORY.append({key: smoothed})
return round(smoothed, 6)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# DATA INGEST & SIGNAL GENERATION
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def fetch_macro(country: str, year: str) -> Dict:
result = {"type": "macro", "country": country, "year": year}
t0 = time.time()
for name, code in INDICATORS.items():
try:
r = requests.get(
f"{WORLD_BANK_BASE}/country/{country}/indicator/{code}?format=json&date={year}&per_page=1",
timeout=7
).json()
result[name.lower()] = r[1][0]["value"] if len(r) > 1 and r[1] else None
except:
result[name.lower()] = None
latency = time.time() - t0
return result, latency
def generate_signals(commodity: str, anchor: float, macro: Dict, lag_days: int) -> List[Tuple[Dict, str]]:
gdp_scale = macro.get("gdp", 1e14) / 1e14 if macro.get("gdp") else 1.0
supply = anchor * gdp_scale
price = omega_smooth("price_index", round((supply / 11.0) * gdp_scale, 6))
econ = {
"type": "commodity",
"commodity": commodity,
"supply": round(supply, 4),
"demand": round(supply * 0.95, 4),
"price_index": price,
"flow": round(supply * 0.95 * price, 4)
}
friction = abs(econ["supply"] - econ["demand"]) / max(econ["supply"], 1e-9)
logi = {"type": "logistics", "friction": round(friction, 6)}
ener = {"type": "energy", "cost_index": round(price * 0.42, 4),
"dependency": "high" if commodity.lower() in ["oil","gas"] else "moderate"}
sent = {"type": "sentiment", "confidence": omega_smooth("confidence", np.random.uniform(0.62, 0.91))}
feat = {
"type": "features",
"lag_days": lag_days,
"projected_price": round(price * (1 + (1 - sent["confidence"]) * 0.07), 6),
"volatility": round(0.012 * lag_days, 6)
}
return [(econ, "commodity.v1"), (logi, "logistics.v1"), (ener, "energy.v1"),
(sent, "sentiment.v1"), (feat, "features.v1")]
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# CORE TICK FUNCTION (with coherence refusal)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def run_tick(commodity: str, anchor: float, country: str, lag_days: int, use_live: bool, year: str):
macro, latency = fetch_macro(country, year) if use_live else (
{"type": "macro", "country": country, "year": year, "gdp": None, "inflation": None, "population": None}, 0.0
)
macro_coh = toy_coherence_score({
"stability": 1.0 - abs(macro.get("inflation", 0) or 0) / 10,
})
if macro_coh < COHERENCE_THRESHOLD:
return {"status": "refused", "reason": f"Macro coherence too low: {macro_coh:.3f}", "tip": get_tip_hash()}, None
macro_rec = {
"ts": time.time(),
"hash": hash_chain(macro, get_tip_hash()),
"prev_hash": get_tip_hash(),
"schema": "macro.v1",
"country": country,
"source": "world_bank" if use_live else "synthetic",
"reliability": 0.88 if use_live else 0.65,
"latency_s": round(latency, 4),
"payload_json": json.dumps(macro, sort_keys=True),
"metadata_json": json.dumps({"note": "anchor ingest"}, sort_keys=True),
"coherence_score": macro_coh,
"bytes": len(canonical_bytes(macro)),
"entropy_proxy": compute_bit_stats(macro)[1]
}
if not insert_record(macro_rec):
return {"status": "error", "reason": "duplicate hash"}, None
signals = generate_signals(commodity, anchor, macro, lag_days)
added = 0
for payload, schema in signals:
coh = toy_coherence_score({"stability": 1.0 - payload.get("friction", 0)})
if coh < COHERENCE_THRESHOLD:
continue # refuse low-coherence derived signal
rec = {
"ts": time.time(),
"hash": hash_chain(payload, get_tip_hash()),
"prev_hash": get_tip_hash(),
"schema": schema,
"country": country,
"source": "derived",
"reliability": 0.92,
"latency_s": 0.0,
"payload_json": json.dumps(payload, sort_keys=True),
"metadata_json": json.dumps({"linked_macro": macro_rec["hash"]}, sort_keys=True),
"coherence_score": coh,
"bytes": len(canonical_bytes(payload)),
"entropy_proxy": compute_bit_stats(payload)[1]
}
if insert_record(rec):
added += 1
tip = get_tip_hash()
return {
"status": "ok",
"added": added,
"tip_hash": tip,
"macro_coherence": macro_coh
}, tip
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# QUERY & CHAT
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def query_records(limit: int = 50, schema: str = "ANY", country: str = "ANY") -> List[Dict]:
limit = max(1, min(int(limit), 300))
with sqlite3.connect(DB_PATH) as con:
cur = con.cursor()
where = []
params = []
if schema != "ANY":
where.append("schema = ?")
params.append(schema)
if country != "ANY":
where.append("country = ?")
params.append(country)
sql = "SELECT ts, hash, prev_hash, schema, country, coherence_score FROM records"
if where:
sql += " WHERE " + " AND ".join(where)
sql += " ORDER BY id DESC LIMIT ?"
params.append(limit)
cur.execute(sql, params)
rows = cur.fetchall()
return [{"ts": r[0], "hash": r[1], "prev": r[2], "schema": r[3], "country": r[4], "coherence": r[5]} for r in rows]
def jarvis(message: str, history):
m = message.lower().strip()
if "latest" in m or "tip" in m:
recs = query_records(1)
return json.dumps(recs[0] if recs else {"status": "empty"}, indent=2)
if "coherence" in m:
recs = query_records(20)
coh_values = [r["coherence"] for r in recs if r["coherence"] is not None]
return f"Recent coherence (last {len(coh_values)}): mean = {np.mean(coh_values):.3f}" if coh_values else "No coherence data yet"
return "Commands: latest, tip, coherence"
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# GRADIO INTERFACE
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
with gr.Blocks(title="CodexFlow v3 β’ IRE Influence") as app:
gr.Markdown("# CodexFlow v3 β’ Provenance Ledger + First IRE Touch")
gr.Markdown("SQLite β’ Hash chain β’ Bit stats β’ Simple coherence refusal & smoothing")
with gr.Row():
with gr.Column(scale=2):
comm = gr.Dropdown(["Gold","Oil","Gas","Wheat","Copper"], "Gold", label="Commodity")
anch = gr.Number(950, label="Anchor")
cntry = gr.Textbox("WLD", label="Country")
lag_d = gr.Slider(1, 365, 7, label="Lag days")
yr = gr.Textbox(DEFAULT_YEAR, label="Year")
live = gr.Checkbox(True, label="Live World Bank")
btn = gr.Button("Run Tick", variant="primary")
res = gr.JSON(label="Result")
tip = gr.Textbox(label="Tip Hash", interactive=False)
btn.click(run_tick, [comm, anch, cntry, lag_d, live, yr], [res, tip])
gr.Markdown("### Query")
lim = gr.Slider(5, 200, 30, label="Limit")
sch = gr.Dropdown(["ANY", "macro.v1", "commodity.v1", "features.v1"], "ANY", label="Schema")
qry_btn = gr.Button("Query")
out = gr.JSON(label="Records")
qry_btn.click(query_records, [lim, sch, cntry], out)
with gr.Column(scale=1):
gr.Markdown("### Jarvis X")
gr.ChatInterface(jarvis, chatbot=gr.Chatbot(height=400))
gr.Markdown("**v3** β’ First coherence check & Ξ© smoothing β’ Still toy-level IRE influence")
if __name__ == "__main__":
app.launch() |