Spaces:
Running
Running
Upload modal_sam3d.py
Browse files- modal_sam3d.py +366 -0
modal_sam3d.py
ADDED
|
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import modal
|
| 3 |
+
import textwrap
|
| 4 |
+
|
| 5 |
+
# Volume that already contains:
|
| 6 |
+
# sam-3d-objects/checkpoints/pipeline.yaml
|
| 7 |
+
# AND will now cache DINOv2 / other model weights
|
| 8 |
+
volume = modal.Volume.from_name("sam3d-weights", create_if_missing=False)
|
| 9 |
+
|
| 10 |
+
# ---------------------------------------------------------------------------
|
| 11 |
+
# Image build: CUDA base + PyTorch + PyTorch3D + SAM-3D repo + deps
|
| 12 |
+
# ---------------------------------------------------------------------------
|
| 13 |
+
sam3d_image = (
|
| 14 |
+
modal.Image.from_registry(
|
| 15 |
+
"nvidia/cuda:12.4.1-devel-ubuntu22.04",
|
| 16 |
+
add_python="3.11", # Python 3.11
|
| 17 |
+
)
|
| 18 |
+
.apt_install(
|
| 19 |
+
"git",
|
| 20 |
+
"g++",
|
| 21 |
+
"gcc",
|
| 22 |
+
"clang",
|
| 23 |
+
"build-essential",
|
| 24 |
+
"libgl1-mesa-glx",
|
| 25 |
+
"libglib2.0-0",
|
| 26 |
+
"libopenexr-dev",
|
| 27 |
+
"wget",
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# STEP 1: Install PyTorch CUDA 12.4 stack (hard fail if broken)
|
| 31 |
+
.pip_install(
|
| 32 |
+
"torch==2.5.1",
|
| 33 |
+
"torchvision",
|
| 34 |
+
"torchaudio",
|
| 35 |
+
index_url="https://download.pytorch.org/whl/cu124",
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# STEP 1.5: Build deps (needed for PyTorch3D / SAM-3D)
|
| 39 |
+
.pip_install(
|
| 40 |
+
"fvcore",
|
| 41 |
+
"iopath",
|
| 42 |
+
"numpy",
|
| 43 |
+
"ninja",
|
| 44 |
+
"setuptools",
|
| 45 |
+
"wheel",
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# STEP 2: Clone the SAM-3D Objects repo
|
| 49 |
+
.run_commands(
|
| 50 |
+
"echo '[STEP 2] Cloning facebookresearch/sam-3d-objects' && "
|
| 51 |
+
"git clone https://github.com/facebookresearch/sam-3d-objects.git /sam3d"
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# STEP 2.1: Remove nvidia-pyindex from pyproject so pip doesn't try to build it
|
| 55 |
+
.run_commands(
|
| 56 |
+
"echo '[STEP 2.1] Removing nvidia-pyindex from pyproject.toml (if present)' && "
|
| 57 |
+
"cd /sam3d && "
|
| 58 |
+
"if [ -f pyproject.toml ]; then "
|
| 59 |
+
" sed -i '/nvidia-pyindex/d' pyproject.toml; "
|
| 60 |
+
"fi"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# STEP 3: Install [p3d] extras (PyTorch3D-related deps), fail-soft
|
| 64 |
+
.run_commands(
|
| 65 |
+
"echo '[STEP 3] Installing sam-3d-objects extra [p3d]' && "
|
| 66 |
+
"cd /sam3d && "
|
| 67 |
+
"PIP_EXTRA_INDEX_URL='https://pypi.ngc.nvidia.com https://download.pytorch.org/whl/cu124' "
|
| 68 |
+
"pip install -e '.[p3d]' "
|
| 69 |
+
"|| echo '[WARN] [p3d] extras failed to install, continuing without them.'"
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# STEP 4: Install [inference] extras (Kaolin etc.), fail-soft
|
| 73 |
+
.run_commands(
|
| 74 |
+
"echo '[STEP 4] Installing sam-3d-objects extra [inference] (includes Kaolin etc.)' && "
|
| 75 |
+
"cd /sam3d && "
|
| 76 |
+
"PIP_FIND_LINKS='https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.5.1_cu121.html' "
|
| 77 |
+
"pip install -e '.[inference]' "
|
| 78 |
+
"|| echo '[WARN] [inference] extras failed to install, continuing without them.'"
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# STEP 5: Helper libs (open3d, trimesh, seaborn) – fail-soft
|
| 82 |
+
.run_commands(
|
| 83 |
+
"echo '[STEP 5] Installing helper libraries: open3d, trimesh, seaborn' && "
|
| 84 |
+
"pip install open3d trimesh seaborn "
|
| 85 |
+
"|| echo '[WARN] Helper libs (open3d/trimesh/seaborn) failed to install, continuing.'"
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
# STEP 5.5: Config libs required by inference.py (omegaconf, hydra-core)
|
| 89 |
+
.run_commands(
|
| 90 |
+
"echo '[STEP 5.5] Installing config libraries: omegaconf, hydra-core' && "
|
| 91 |
+
"pip install omegaconf hydra-core "
|
| 92 |
+
"|| echo '[WARN] omegaconf/hydra-core failed to install, continuing.'"
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# STEP 5.6: Install utils3d explicitly (inference.py imports this)
|
| 96 |
+
.run_commands(
|
| 97 |
+
"echo '[STEP 5.6] Installing utils3d' && "
|
| 98 |
+
"pip install "
|
| 99 |
+
"'git+https://github.com/EasternJournalist/utils3d.git@3913c65d81e05e47b9f367250cf8c0f7462a0900' "
|
| 100 |
+
"|| echo '[WARN] utils3d failed to install, continuing.'"
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# STEP 5.7: Installing gradio (inference.py imports this)
|
| 104 |
+
.run_commands(
|
| 105 |
+
"echo '[STEP 5.7] Installing gradio' && "
|
| 106 |
+
"pip install gradio "
|
| 107 |
+
"|| echo '[WARN] gradio failed to install, continuing.'"
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
.run_commands(
|
| 111 |
+
"echo '[STEP 5.8] Installing kaolin from NVIDIA index' && "
|
| 112 |
+
"pip install kaolin "
|
| 113 |
+
"-f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.5.1_cu121.html "
|
| 114 |
+
"|| echo '[WARN] kaolin install failed, continuing.'"
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# STEP 5.9: Install loguru (needed by inference_pipeline_pointmap)
|
| 118 |
+
.run_commands(
|
| 119 |
+
"echo '[STEP 5.9] Installing loguru' && "
|
| 120 |
+
"pip install loguru "
|
| 121 |
+
"|| echo '[WARN] loguru failed to install, continuing.'"
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# STEP 5.91: Install timm (vision transformer lib)
|
| 125 |
+
.run_commands(
|
| 126 |
+
"echo '[STEP 5.91] Installing timm' && "
|
| 127 |
+
"pip install timm "
|
| 128 |
+
"|| echo '[WARN] timm failed to install, continuing.'"
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# STEP 5.8: Install PyTorch3D from GitHub @stable, using the pattern that worked for you
|
| 132 |
+
.run_commands(
|
| 133 |
+
"echo '[STEP 5.92] Installing PyTorch3D from GitHub @stable (no build isolation, no deps)' && "
|
| 134 |
+
"python -c 'import pytorch3d' 2>/dev/null && "
|
| 135 |
+
"echo 'PyTorch3D already installed, skipping...' || ( "
|
| 136 |
+
"export FORCE_CUDA=1 && "
|
| 137 |
+
"export TORCH_CUDA_ARCH_LIST='8.0;8.6;8.9;9.0' && "
|
| 138 |
+
"pip install --no-build-isolation --no-deps "
|
| 139 |
+
"\"git+https://github.com/facebookresearch/pytorch3d.git@stable\" "
|
| 140 |
+
")"
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
.run_commands(
|
| 144 |
+
"cd /sam3d && pip install '.[dev]' --no-deps"
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
.run_commands("pip install optree")
|
| 148 |
+
.run_commands("pip install astor==0.8.1")
|
| 149 |
+
.run_commands("pip install opencv-python")
|
| 150 |
+
.run_commands("pip install lightning")
|
| 151 |
+
.run_commands("pip install spconv-cu121==2.3.8")
|
| 152 |
+
.run_commands("pip install psutil && pip install --no-build-isolation flash_attn==2.8.3 || echo '[WARN] flash_attn failed'")
|
| 153 |
+
.run_commands("pip install xatlas==0.0.9")
|
| 154 |
+
.run_commands("pip install pyvista")
|
| 155 |
+
.run_commands("pip install pymeshfix==0.17.0")
|
| 156 |
+
.run_commands("pip install igraph")
|
| 157 |
+
.run_commands("pip install easydict")
|
| 158 |
+
.run_commands("pip install igraph")
|
| 159 |
+
.run_commands(
|
| 160 |
+
"export TORCH_CUDA_ARCH_LIST='8.0;8.6;8.9;9.0' && "
|
| 161 |
+
"pip install --no-build-isolation 'git+https://github.com/nerfstudio-project/gsplat.git@2323de5905d5e90e035f792fe65bad0fedd413e7'"
|
| 162 |
+
)
|
| 163 |
+
.run_commands("pip install igraph")
|
| 164 |
+
.run_commands("pip install 'git+https://github.com/microsoft/MoGe.git@a8c37341bc0325ca99b9d57981cc3bb2bd3e255b'")
|
| 165 |
+
.run_commands("pip install imageio")
|
| 166 |
+
# STEP 6: Patch hydra – skip if it fails
|
| 167 |
+
.run_commands(
|
| 168 |
+
"echo '[STEP 6] Patching hydra' && "
|
| 169 |
+
"cd /sam3d && "
|
| 170 |
+
"./patching/hydra "
|
| 171 |
+
"|| echo '[WARN] Hydra patch failed, continuing without patch.'"
|
| 172 |
+
)
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
app = modal.App("sam3d-objects-inference", image=sam3d_image)
|
| 176 |
+
|
| 177 |
+
# ---------------------------------------------------------------------------
|
| 178 |
+
# Runtime helper: minimal pytorch3d stub so SAM-3D imports work (fallback)
|
| 179 |
+
@app.cls(
|
| 180 |
+
image=sam3d_image,
|
| 181 |
+
gpu="A10G",
|
| 182 |
+
timeout=600,
|
| 183 |
+
volumes={"/weights": volume},
|
| 184 |
+
scaledown_window=300, # renamed from container_idle_timeout
|
| 185 |
+
enable_memory_snapshot=True, # required for snap=True
|
| 186 |
+
)
|
| 187 |
+
class SAM3DModel:
|
| 188 |
+
|
| 189 |
+
@modal.enter(snap=True)
|
| 190 |
+
def setup(self):
|
| 191 |
+
"""Model loads once when container starts. snap=True caches the loaded state."""
|
| 192 |
+
import os
|
| 193 |
+
import sys
|
| 194 |
+
import math
|
| 195 |
+
import types
|
| 196 |
+
import torch
|
| 197 |
+
|
| 198 |
+
# Cache setup
|
| 199 |
+
CACHE_DIR = "/weights/model_cache"
|
| 200 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 201 |
+
os.environ["TORCH_HOME"] = CACHE_DIR
|
| 202 |
+
os.environ["TORCH_HUB"] = os.path.join(CACHE_DIR, "hub")
|
| 203 |
+
os.environ["HF_HOME"] = os.path.join(CACHE_DIR, "huggingface")
|
| 204 |
+
os.environ["TRANSFORMERS_CACHE"] = os.path.join(CACHE_DIR, "huggingface")
|
| 205 |
+
os.environ["XDG_CACHE_HOME"] = CACHE_DIR
|
| 206 |
+
os.environ["TIMM_CACHE"] = os.path.join(CACHE_DIR, "timm")
|
| 207 |
+
os.environ.setdefault("CUDA_HOME", "/usr/local/cuda")
|
| 208 |
+
os.environ.setdefault("CONDA_PREFIX", "/usr/local/cuda")
|
| 209 |
+
|
| 210 |
+
# pytorch3d stub
|
| 211 |
+
try:
|
| 212 |
+
import pytorch3d
|
| 213 |
+
except Exception:
|
| 214 |
+
pkg = types.ModuleType("pytorch3d")
|
| 215 |
+
transforms_mod = types.ModuleType("pytorch3d.transforms")
|
| 216 |
+
renderer_mod = types.ModuleType("pytorch3d.renderer")
|
| 217 |
+
def _quat_conj(q):
|
| 218 |
+
w, x, y, z = q.unbind(-1)
|
| 219 |
+
return torch.stack((w, -x, -y, -z), dim=-1)
|
| 220 |
+
def quaternion_multiply(q1, q2):
|
| 221 |
+
w1, x1, y1, z1 = q1.unbind(-1)
|
| 222 |
+
w2, x2, y2, z2 = q2.unbind(-1)
|
| 223 |
+
return torch.stack([w1*w2-x1*x2-y1*y2-z1*z2, w1*x2+x1*w2+y1*z2-z1*y2,
|
| 224 |
+
w1*y2-x1*z2+y1*w2+z1*x2, w1*z2+x1*y2-y1*x2+z1*w2], dim=-1)
|
| 225 |
+
def quaternion_invert(q):
|
| 226 |
+
return _quat_conj(q) / (q.norm(dim=-1, keepdim=True) ** 2 + 1e-8)
|
| 227 |
+
transforms_mod.quaternion_multiply = quaternion_multiply
|
| 228 |
+
transforms_mod.quaternion_invert = quaternion_invert
|
| 229 |
+
class Transform3d:
|
| 230 |
+
def __init__(self, matrix=None, device=None):
|
| 231 |
+
self.matrix = torch.eye(4, device=device).unsqueeze(0) if matrix is None else matrix
|
| 232 |
+
def compose(self, other):
|
| 233 |
+
return Transform3d(other.matrix @ self.matrix)
|
| 234 |
+
def transform_points(self, points):
|
| 235 |
+
if points.dim() == 2:
|
| 236 |
+
pts = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1)
|
| 237 |
+
return (self.matrix[0] @ pts.T).T[..., :3]
|
| 238 |
+
elif points.dim() == 3:
|
| 239 |
+
B, N, _ = points.shape
|
| 240 |
+
pts = torch.cat([points, torch.ones(B, N, 1, device=points.device)], dim=-1)
|
| 241 |
+
mat = self.matrix.expand(B, -1, -1) if self.matrix.shape[0] == 1 and B > 1 else self.matrix
|
| 242 |
+
return torch.bmm(mat, pts.transpose(1, 2)).transpose(1, 2)[..., :3]
|
| 243 |
+
transforms_mod.Transform3d = Transform3d
|
| 244 |
+
def look_at_view_transform(dist=1.0, elev=0.0, azim=0.0, device=None):
|
| 245 |
+
dist_t = torch.tensor([dist], device=device, dtype=torch.float32)
|
| 246 |
+
elev_rad = torch.tensor([elev], device=device) * math.pi / 180.0
|
| 247 |
+
azim_rad = torch.tensor([azim], device=device) * math.pi / 180.0
|
| 248 |
+
x = dist_t * torch.cos(elev_rad) * torch.sin(azim_rad)
|
| 249 |
+
y = dist_t * torch.sin(elev_rad)
|
| 250 |
+
z = dist_t * torch.cos(elev_rad) * torch.cos(azim_rad)
|
| 251 |
+
cam_pos = torch.stack([x, y, z], dim=-1)
|
| 252 |
+
up = torch.tensor([[0.0, 1.0, 0.0]], device=device)
|
| 253 |
+
z_axis = torch.nn.functional.normalize(cam_pos, dim=-1)
|
| 254 |
+
x_axis = torch.nn.functional.normalize(torch.cross(up, z_axis, dim=-1), dim=-1)
|
| 255 |
+
y_axis = torch.cross(z_axis, x_axis, dim=-1)
|
| 256 |
+
R = torch.stack([x_axis, y_axis, z_axis], dim=-1)
|
| 257 |
+
T = -torch.bmm(R, cam_pos.unsqueeze(-1)).squeeze(-1)
|
| 258 |
+
return R, T
|
| 259 |
+
renderer_mod.look_at_view_transform = look_at_view_transform
|
| 260 |
+
pkg.transforms = transforms_mod
|
| 261 |
+
pkg.renderer = renderer_mod
|
| 262 |
+
sys.modules["pytorch3d"] = pkg
|
| 263 |
+
sys.modules["pytorch3d.transforms"] = transforms_mod
|
| 264 |
+
sys.modules["pytorch3d.renderer"] = renderer_mod
|
| 265 |
+
|
| 266 |
+
sys.path.insert(0, "/sam3d")
|
| 267 |
+
sys.path.insert(0, "/sam3d/notebook")
|
| 268 |
+
from inference import Inference, load_image
|
| 269 |
+
self.load_image = load_image
|
| 270 |
+
self.model = Inference("/weights/sam-3d-objects/checkpoints/pipeline.yaml", compile=False)
|
| 271 |
+
print("[SETUP] Model loaded!")
|
| 272 |
+
|
| 273 |
+
@modal.method()
|
| 274 |
+
def reconstruct(self, image_bytes: bytes, mask_bytes: bytes = None) -> tuple[bytes, bytes]:
|
| 275 |
+
import os, io, tempfile, shutil
|
| 276 |
+
import numpy as np
|
| 277 |
+
from PIL import Image
|
| 278 |
+
import torch
|
| 279 |
+
|
| 280 |
+
temp_dir = tempfile.mkdtemp()
|
| 281 |
+
image_path = os.path.join(temp_dir, "image.png")
|
| 282 |
+
mask_path = os.path.join(temp_dir, "mask.png")
|
| 283 |
+
with open(image_path, 'wb') as f:
|
| 284 |
+
f.write(image_bytes)
|
| 285 |
+
|
| 286 |
+
pil_image = Image.open(image_path)
|
| 287 |
+
if mask_bytes is not None:
|
| 288 |
+
with open(mask_path, 'wb') as f:
|
| 289 |
+
f.write(mask_bytes)
|
| 290 |
+
mask = np.array(Image.open(mask_path).convert('L'))
|
| 291 |
+
elif pil_image.mode == 'RGBA':
|
| 292 |
+
alpha = np.array(pil_image)[:, :, 3]
|
| 293 |
+
mask = (alpha > 128).astype(np.uint8) * 255
|
| 294 |
+
pil_image = pil_image.convert('RGB')
|
| 295 |
+
pil_image.save(image_path)
|
| 296 |
+
else:
|
| 297 |
+
raise ValueError("Provide either: 1) separate mask_bytes, or 2) RGBA image with alpha mask")
|
| 298 |
+
|
| 299 |
+
if np.sum(mask > 0) < 100:
|
| 300 |
+
raise ValueError("Mask too small!")
|
| 301 |
+
|
| 302 |
+
image = self.load_image(image_path)
|
| 303 |
+
if mask.shape[0] != image.shape[0] or mask.shape[1] != image.shape[1]:
|
| 304 |
+
mask = np.array(Image.fromarray(mask).resize((image.shape[1], image.shape[0]), Image.NEAREST))
|
| 305 |
+
|
| 306 |
+
with torch.inference_mode():
|
| 307 |
+
output = self.model(image, mask, seed=42)
|
| 308 |
+
|
| 309 |
+
shutil.rmtree(temp_dir, ignore_errors=True)
|
| 310 |
+
|
| 311 |
+
ply_buffer = io.BytesIO()
|
| 312 |
+
output["gs"].save_ply(ply_buffer)
|
| 313 |
+
|
| 314 |
+
glb_bytes = None
|
| 315 |
+
if "mesh" in output and output["mesh"]:
|
| 316 |
+
import trimesh
|
| 317 |
+
mesh = output["mesh"][0] if isinstance(output["mesh"], list) else output["mesh"]
|
| 318 |
+
glb_bytes = trimesh.Trimesh(
|
| 319 |
+
vertices=mesh.vertices.cpu().numpy(),
|
| 320 |
+
faces=mesh.faces.cpu().numpy()
|
| 321 |
+
).export(file_type="glb")
|
| 322 |
+
|
| 323 |
+
return ply_buffer.getvalue(), glb_bytes
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
@app.local_entrypoint()
|
| 327 |
+
def main(
|
| 328 |
+
input_path: str = "sam3d_1.png",
|
| 329 |
+
mask_path: str = "sam3d_1gray.png",
|
| 330 |
+
output_path: str = "output_model.ply",
|
| 331 |
+
):
|
| 332 |
+
"""
|
| 333 |
+
Local test:
|
| 334 |
+
# With RGBA image (mask in alpha):
|
| 335 |
+
modal run modal_sam3d.py --input-path image_rgba.png
|
| 336 |
+
|
| 337 |
+
# With separate mask file (official pattern):
|
| 338 |
+
modal run modal_sam3d.py --input-path image.png --mask-path mask.png
|
| 339 |
+
"""
|
| 340 |
+
from pathlib import Path
|
| 341 |
+
|
| 342 |
+
input_file = Path(input_path)
|
| 343 |
+
if not input_file.exists():
|
| 344 |
+
print(f"[LOCAL] ERROR: Input image not found: {input_file.resolve()}")
|
| 345 |
+
return
|
| 346 |
+
|
| 347 |
+
mask_bytes = None
|
| 348 |
+
if mask_path:
|
| 349 |
+
mask_file = Path(mask_path)
|
| 350 |
+
if mask_file.exists():
|
| 351 |
+
mask_bytes = mask_file.read_bytes()
|
| 352 |
+
print(f"[LOCAL] Using separate mask file: {mask_file}")
|
| 353 |
+
else:
|
| 354 |
+
print(f"[LOCAL] WARNING: Mask file not found: {mask_file}")
|
| 355 |
+
|
| 356 |
+
print(f"[LOCAL] Sending {input_file} to SAM-3D on Modal...")
|
| 357 |
+
model = SAM3DModel()
|
| 358 |
+
ply_bytes, glb_bytes = model.reconstruct.remote(input_file.read_bytes(), mask_bytes)
|
| 359 |
+
|
| 360 |
+
output_file = Path(output_path)
|
| 361 |
+
output_file.write_bytes(ply_bytes)
|
| 362 |
+
if glb_bytes:
|
| 363 |
+
glb_file = Path(output_path).with_suffix(".glb")
|
| 364 |
+
glb_file.write_bytes(glb_bytes)
|
| 365 |
+
print(f"[LOCAL] Saved mesh to: {glb_file}")
|
| 366 |
+
print(f"[LOCAL] Saved 3D model to: {output_file.resolve()} ({len(ply_bytes)} bytes)")
|