File size: 10,366 Bytes
eb20770 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
"""
Quantum ESPRESSO MCP Server - Gradio Demo
A demonstration interface for the QE-MCP server that enables
LLMs to run DFT calculations with natural language.
"""
import gradio as gr
import json
# Demo data (since we can't run Docker on HuggingFace Spaces)
DEMO_RESULTS = {
"Si": {
"scf": {
"success": True,
"total_energy_eV": -214.4906,
"fermi_energy_eV": 6.2975,
"converged": True,
"n_iterations": 4,
"parameters_used": {"spin_polarized": False, "smearing": "cold", "degauss": 0.02}
},
"bandstructure": {
"success": True,
"band_gap_eV": 0.56,
"is_direct": False,
"vbm_location": "Γ",
"cbm_location": "X",
"fermi_energy_eV": 6.2975
}
},
"Fe": {
"scf": {
"success": True,
"total_energy_eV": -3220.5287,
"fermi_energy_eV": 17.8432,
"total_magnetization": 7.63,
"converged": True,
"n_iterations": 12,
"parameters_used": {"spin_polarized": True, "smearing": "cold", "degauss": 0.02}
}
},
"Cu": {
"scf": {
"success": True,
"total_energy_eV": -1653.2341,
"fermi_energy_eV": 12.4521,
"converged": True,
"n_iterations": 6,
"parameters_used": {"spin_polarized": False, "smearing": "cold", "degauss": 0.02}
}
},
"GaAs": {
"scf": {
"success": True,
"total_energy_eV": -312.8765,
"fermi_energy_eV": 5.1234,
"converged": True,
"n_iterations": 5,
"parameters_used": {"spin_polarized": False, "smearing": "cold", "degauss": 0.02}
},
"bandstructure": {
"success": True,
"band_gap_eV": 0.48,
"is_direct": True,
"vbm_location": "Γ",
"cbm_location": "Γ",
"fermi_energy_eV": 5.1234
}
}
}
AVAILABLE_ELEMENTS = [
"Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Br", "C", "Ca", "Cd", "Cl",
"Co", "Cr", "Cs", "Cu", "F", "Fe", "Ga", "Ge", "H", "He", "Hf", "Hg", "I", "In",
"Ir", "K", "Kr", "La", "Li", "Mg", "Mn", "Mo", "N", "Na", "Nb", "Ne", "Ni", "O",
"Os", "P", "Pb", "Pd", "Pt", "Rb", "Re", "Rh", "Ru", "S", "Sb", "Sc", "Se", "Si",
"Sn", "Sr", "Ta", "Tc", "Te", "Ti", "Tl", "V", "W", "Xe", "Y", "Zn", "Zr"
]
MCP_TOOLS = """
## 🔧 Available MCP Tools
| Tool | Description |
|------|-------------|
| `qe_run_scf` | Self-consistent field calculation (total energy, Fermi level) |
| `qe_run_relax` | Optimize atomic positions |
| `qe_run_vc_relax` | Variable-cell relaxation (optimize positions AND cell) |
| `qe_workflow_bandstructure` | Complete band structure workflow |
| `qe_workflow_dos` | Density of states calculation |
| `qe_workflow_relax_and_scf` | Relax structure then accurate SCF |
| `qe_load_structure` | Load and inspect atomic structures |
| `qe_get_kpath` | Get high-symmetry k-path for band structure |
| `qe_suggest_kpoints` | Suggest k-point grid based on cell size |
| `qe_list_pseudopotentials` | List available elements (69 total) |
| `qe_validate_structure` | Validate structure and check for issues |
| `qe_status` | Get QE MCP server status |
"""
def run_scf_demo(material: str) -> str:
"""Simulate SCF calculation"""
material = material.strip()
if material in DEMO_RESULTS:
result = DEMO_RESULTS[material]["scf"]
output = f"""## ⚡ SCF Calculation: {material}
✅ **Success**: {result['success']}
🔋 **Total Energy**: {result['total_energy_eV']:.4f} eV
📊 **Fermi Energy**: {result['fermi_energy_eV']:.4f} eV
🔄 **Converged**: {result['converged']} ({result['n_iterations']} iterations)
"""
if result.get('total_magnetization'):
output += f"🧲 **Magnetization**: {result['total_magnetization']:.2f} μB\n"
output += f"\n⚙️ **Auto-detected parameters**: {json.dumps(result['parameters_used'])}"
return output
else:
return f"""## ⚡ SCF Calculation: {material}
This is a **demo** showing the MCP tool interface.
In the full version, calling `qe_run_scf(structure='{material}')` would:
1. Build the crystal structure using ASE
2. Generate QE input files
3. Run pw.x in Docker container
4. Parse and return results
**Supported elements**: {', '.join(AVAILABLE_ELEMENTS)}
"""
def run_bandstructure_demo(material: str) -> str:
"""Simulate band structure calculation"""
material = material.strip()
if material in DEMO_RESULTS and "bandstructure" in DEMO_RESULTS[material]:
result = DEMO_RESULTS[material]["bandstructure"]
gap_type = "direct" if result['is_direct'] else "indirect"
return f"""## 📈 Band Structure: {material}
✅ **Success**: {result['success']}
🎯 **Band Gap**: {result['band_gap_eV']:.2f} eV ({gap_type})
📍 **VBM Location**: {result['vbm_location']}
📍 **CBM Location**: {result['cbm_location']}
📊 **Fermi Energy**: {result['fermi_energy_eV']:.4f} eV
### Interpretation
{"This is a **semiconductor** with a " + gap_type + " band gap." if result['band_gap_eV'] > 0 else "This is a **metal**."}
"""
else:
return f"""## 📈 Band Structure: {material}
This is a **demo** showing the MCP tool interface.
In the full version, calling `qe_workflow_bandstructure(structure='{material}')` would:
1. Run SCF calculation
2. Get high-symmetry k-path (Γ-X-W-K-Γ-L-U-W-L-K)
3. Calculate bands along path
4. Analyze band gap
**Try**: Si, GaAs (have demo results)
"""
def show_mcp_config() -> str:
"""Show MCP configuration for Claude Desktop"""
return """## 🔧 Claude Desktop Configuration
Add this to `~/Library/Application Support/Claude/claude_desktop_config.json` (macOS):
```json
{
"mcpServers": {
"quantum-espresso": {
"command": "uv",
"args": ["--directory", "/path/to/QE_MCP", "run", "qe-mcp"]
}
}
}
```
Then restart Claude Desktop and you can say:
- *"Calculate the total energy of silicon"*
- *"What's the band gap of GaAs?"*
- *"Run a spin-polarized calculation for iron"*
## 📋 Requirements
- Docker (with `qe-local` image)
- Python 3.10+
- uv package manager
"""
def list_elements() -> str:
"""List all available elements"""
elements_grid = ""
for i, elem in enumerate(AVAILABLE_ELEMENTS):
elements_grid += f"`{elem}` "
if (i + 1) % 10 == 0:
elements_grid += "\n"
return f"""## 🧪 Supported Elements (69 total)
SG15 ONCV Pseudopotential Library:
{elements_grid}
### Magnetic Elements (auto spin-polarized)
`Fe` `Co` `Ni` `Mn` `Cr` `V` `Gd` `Eu` `Tb` `Dy` `Ho` `Er`
"""
# Create Gradio Interface
with gr.Blocks(
title="⚛️ Quantum ESPRESSO MCP Server",
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="purple"),
css="""
.gradio-container { max-width: 1200px !important; }
.tool-card { border: 1px solid #e0e0e0; border-radius: 8px; padding: 16px; margin: 8px 0; }
"""
) as demo:
gr.Markdown("""
# ⚛️ Quantum ESPRESSO MCP Server
> **Run DFT calculations with natural language!** An MCP server that enables LLMs to perform
> first-principles quantum mechanical simulations.
[](https://modelcontextprotocol.io)
[](https://www.quantum-espresso.org/)
⚠️ **Note**: This is a demo interface. The full MCP server runs locally with Docker.
""")
with gr.Tabs():
with gr.Tab("🧪 Try It"):
gr.Markdown("### Simulate MCP Tool Calls")
with gr.Row():
with gr.Column():
material_input = gr.Textbox(
label="Material Formula",
placeholder="Si, Fe, Cu, GaAs...",
value="Si"
)
with gr.Row():
scf_btn = gr.Button("⚡ Run SCF", variant="primary")
band_btn = gr.Button("📈 Band Structure", variant="secondary")
with gr.Column():
output = gr.Markdown(label="Result")
scf_btn.click(run_scf_demo, inputs=[material_input], outputs=[output])
band_btn.click(run_bandstructure_demo, inputs=[material_input], outputs=[output])
gr.Markdown("**Demo materials**: Si, Fe, Cu, GaAs")
with gr.Tab("🔧 MCP Tools"):
gr.Markdown(MCP_TOOLS)
gr.Markdown("""
### 🎯 8 Prompts for Guided Workflows
| Prompt | Description |
|--------|-------------|
| `band_structure` | Calculate electronic band structure |
| `dos_calculation` | Density of states workflow |
| `geometry_optimization` | Structure relaxation steps |
| `convergence_test` | Parameter convergence testing |
| `surface_calculation` | Surface energy calculations |
| `magnetic_calculation` | Magnetic properties (Fe, Ni, Co) |
| `troubleshoot` | Diagnose calculation problems |
| `compare_structures` | Compare multiple structures |
""")
with gr.Tab("⚙️ Setup"):
config_output = gr.Markdown(value=show_mcp_config())
with gr.Tab("🧪 Elements"):
elements_output = gr.Markdown(value=list_elements())
gr.Markdown("""
---
### 🏗️ Architecture
```
User (natural language) → LLM (Claude/GPT) → MCP Protocol → QE-MCP Server → Docker (QE v6.7) → Results
```
### 🛠️ Tech Stack
- **Quantum ESPRESSO v6.7MaX** - DFT engine
- **MCP SDK** (mcp>=1.0.0) - Model Context Protocol
- **ASE 3.26** - Atomic Simulation Environment
- **Docker** - Containerized QE
- **SG15 ONCV** - 69 element pseudopotentials
---
*Built for [MCP's 1st Birthday Hackathon](https://huggingface.co/MCP-1st-Birthday) 🎂 by [@frimpsjoe](https://huggingface.co/frimpsjoe)*
""")
if __name__ == "__main__":
demo.launch()
|