Spaces:
Running
Running
Titova Ksenia
commited on
Commit
·
1077ec2
1
Parent(s):
753c6f8
remove prints
Browse files- app.py +35 -35
- src/populate.py +3 -1
app.py
CHANGED
|
@@ -103,41 +103,41 @@ with demo:
|
|
| 103 |
with gr.Row():
|
| 104 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 105 |
|
| 106 |
-
with gr.Column():
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
with gr.Row():
|
| 142 |
gr.Markdown("# ✉️✨ Queue your model here!", elem_classes="markdown-text")
|
| 143 |
|
|
|
|
| 103 |
with gr.Row():
|
| 104 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 105 |
|
| 106 |
+
# with gr.Column():
|
| 107 |
+
# with gr.Accordion(
|
| 108 |
+
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 109 |
+
# open=False,
|
| 110 |
+
# ):
|
| 111 |
+
# with gr.Row():
|
| 112 |
+
# finished_eval_table = gr.components.Dataframe(
|
| 113 |
+
# value=finished_eval_queue_df,
|
| 114 |
+
# headers=EVAL_COLS,
|
| 115 |
+
# datatype=EVAL_TYPES,
|
| 116 |
+
# row_count=5,
|
| 117 |
+
# )
|
| 118 |
+
# with gr.Accordion(
|
| 119 |
+
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 120 |
+
# open=False,
|
| 121 |
+
# ):
|
| 122 |
+
# with gr.Row():
|
| 123 |
+
# running_eval_table = gr.components.Dataframe(
|
| 124 |
+
# value=running_eval_queue_df,
|
| 125 |
+
# headers=EVAL_COLS,
|
| 126 |
+
# datatype=EVAL_TYPES,
|
| 127 |
+
# row_count=5,
|
| 128 |
+
# )
|
| 129 |
+
|
| 130 |
+
# with gr.Accordion(
|
| 131 |
+
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 132 |
+
# open=False,
|
| 133 |
+
# ):
|
| 134 |
+
# with gr.Row():
|
| 135 |
+
# pending_eval_table = gr.components.Dataframe(
|
| 136 |
+
# value=pending_eval_queue_df,
|
| 137 |
+
# headers=EVAL_COLS,
|
| 138 |
+
# datatype=EVAL_TYPES,
|
| 139 |
+
# row_count=5,
|
| 140 |
+
# )
|
| 141 |
with gr.Row():
|
| 142 |
gr.Markdown("# ✉️✨ Queue your model here!", elem_classes="markdown-text")
|
| 143 |
|
src/populate.py
CHANGED
|
@@ -11,7 +11,9 @@ from src.leaderboard.read_evals import get_raw_eval_results
|
|
| 11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 12 |
"""Creates a dataframe from all the individual experiment results"""
|
| 13 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
|
| 16 |
df = pd.DataFrame.from_records(all_data_json)
|
| 17 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
|
|
|
| 11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 12 |
"""Creates a dataframe from all the individual experiment results"""
|
| 13 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
| 14 |
+
mina = min([a.results["mpcc_delta"] for a in raw_data.values()])
|
| 15 |
+
maxa = max([a.results["mpcc_delta"] for a in raw_data.values()])
|
| 16 |
+
all_data_json = [v.to_dict(mina, maxa) for v in raw_data]
|
| 17 |
|
| 18 |
df = pd.DataFrame.from_records(all_data_json)
|
| 19 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|