Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import tensorflow as tf | |
| from tensorflow.keras.models import Sequential | |
| from tensorflow.keras.layers import Dense | |
| import streamlit as st | |
| # Function to generate synthetic data | |
| def generate_data(dataset_type, noise, n_samples=500): | |
| np.random.seed(0) | |
| if dataset_type == 'moons': | |
| from sklearn.datasets import make_moons | |
| X, y = make_moons(n_samples=n_samples, noise=noise) | |
| elif dataset_type == 'circles': | |
| from sklearn.datasets import make_circles | |
| X, y = make_circles(n_samples=n_samples, noise=noise, factor=0.5) | |
| elif dataset_type == 'linear': | |
| X = np.random.randn(n_samples, 2) | |
| y = (X[:, 0] > X[:, 1]).astype(int) | |
| else: | |
| X = np.random.randn(n_samples, 2) | |
| y = np.random.randint(0, 2, n_samples) | |
| return X, y | |
| # Function to create model | |
| def create_model(input_shape, hidden_layers, activation, learning_rate, regularization_rate): | |
| model = Sequential() | |
| model.add(Dense(hidden_layers[0], input_shape=input_shape, activation=activation, | |
| kernel_regularizer=tf.keras.regularizers.l2(regularization_rate))) | |
| for units in hidden_layers[1:]: | |
| model.add(Dense(units, activation=activation, | |
| kernel_regularizer=tf.keras.regularizers.l2(regularization_rate))) | |
| model.add(Dense(1, activation='sigmoid')) | |
| model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate), | |
| loss='binary_crossentropy', | |
| metrics=['accuracy']) | |
| return model | |
| # Streamlit UI | |
| st.title('Interactive Neural Network Visualization') | |
| st.sidebar.header('Model Parameters') | |
| # Dataset selection | |
| dataset_type = st.sidebar.selectbox('Select dataset', ['moons', 'circles', 'linear']) | |
| noise = st.sidebar.slider('Noise level', 0.0, 1.0, 0.2) | |
| X, y = generate_data(dataset_type, noise) | |
| split = st.sidebar.slider('Train/Test split ratio', 0.1, 0.9, 0.5) | |
| split_idx = int(split * len(X)) | |
| X_train, X_test = X[:split_idx], X[split_idx:] | |
| y_train, y_test = y[:split_idx], y[split_idx:] | |
| # Model parameters | |
| learning_rate = st.sidebar.slider('Learning rate', 0.001, 0.1, 0.01) | |
| activation = st.sidebar.selectbox('Activation function', ['relu', 'tanh', 'sigmoid']) | |
| regularization_rate = st.sidebar.slider('Regularization rate', 0.0, 0.1, 0.01) | |
| hidden_layers = [st.sidebar.slider('Layer 1 units', 1, 10, 4), | |
| st.sidebar.slider('Layer 2 units', 1, 10, 2)] | |
| # Create and train model | |
| model = create_model((2,), hidden_layers, activation, learning_rate, regularization_rate) | |
| history = model.fit(X_train, y_train, epochs=100, verbose=0, validation_split=0.1) | |
| # Evaluation | |
| train_loss, train_acc = model.evaluate(X_train, y_train, verbose=0) | |
| test_loss, test_acc = model.evaluate(X_test, y_test, verbose=0) | |
| st.write(f'Training loss: {train_loss:.4f}, Training accuracy: {train_acc:.4f}') | |
| st.write(f'Test loss: {test_loss:.4f}, Test accuracy: {test_acc:.4f}') | |
| # Plot data and decision boundary | |
| fig, ax = plt.subplots() | |
| ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', marker='o', edgecolor='k', s=50) | |
| xx, yy = np.meshgrid(np.linspace(X_test[:, 0].min(), X_test[:, 0].max(), 100), | |
| np.linspace(X_test[:, 1].min(), X_test[:, 1].max(), 100)) | |
| Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) | |
| Z = Z.reshape(xx.shape) | |
| ax.contourf(xx, yy, Z, alpha=0.5, cmap='viridis') | |
| ax.set_title('Data and Model Decision Boundary') | |
| st.pyplot(fig) | |