Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import required libraries
|
| 2 |
+
import PyPDF2
|
| 3 |
+
from getpass import getpass
|
| 4 |
+
from haystack.nodes import PreProcessor, PromptModel, PromptTemplate, PromptNode, AnswerParser
|
| 5 |
+
from haystack.document_stores import InMemoryDocumentStore
|
| 6 |
+
from haystack import Document, Pipeline
|
| 7 |
+
from haystack.nodes import BM25Retriever
|
| 8 |
+
from pprint import pprint
|
| 9 |
+
import streamlit as st
|
| 10 |
+
import logging
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
load_dotenv()
|
| 13 |
+
import os
|
| 14 |
+
import logging
|
| 15 |
+
logging.basicConfig(level=logging.DEBUG)
|
| 16 |
+
|
| 17 |
+
# Function to extract text from a PDF
|
| 18 |
+
def extract_text_from_pdf(pdf_path):
|
| 19 |
+
text = ""
|
| 20 |
+
with open(pdf_path, "rb") as pdf_file:
|
| 21 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 22 |
+
for page_num in range(len(pdf_reader.pages)):
|
| 23 |
+
page = pdf_reader.pages[page_num]
|
| 24 |
+
text += page.extract_text() or ""
|
| 25 |
+
return text
|
| 26 |
+
|
| 27 |
+
# Extract text from the PDF file
|
| 28 |
+
pdf_file_path = "Data/MR. MPROFY.pdf"
|
| 29 |
+
pdf_text = extract_text_from_pdf(pdf_file_path)
|
| 30 |
+
if not pdf_text:
|
| 31 |
+
raise ValueError("No text extracted from PDF.")
|
| 32 |
+
|
| 33 |
+
# Create a Haystack document
|
| 34 |
+
doc = Document(content=pdf_text, meta={"name": "MR. MPROFY"})
|
| 35 |
+
|
| 36 |
+
# Initialize Document Store
|
| 37 |
+
document_store = InMemoryDocumentStore(use_bm25=True)
|
| 38 |
+
document_store.write_documents([doc])
|
| 39 |
+
|
| 40 |
+
# Initialize Retriever
|
| 41 |
+
retriever = BM25Retriever(document_store=document_store, top_k=2)
|
| 42 |
+
|
| 43 |
+
# Define QA Template
|
| 44 |
+
qa_template = PromptTemplate(
|
| 45 |
+
prompt="""
|
| 46 |
+
Hi, I'm Mprofier, your friendly AI assistant. I'm here to provide direct and concise answers to your specific questions.
|
| 47 |
+
I won’t ask any follow-up questions myself.
|
| 48 |
+
If I can't find the answer in the provided context, I'll simply state that I don't have enough information to answer.
|
| 49 |
+
Context: {join(documents)};
|
| 50 |
+
Question: {query}
|
| 51 |
+
Answer:
|
| 52 |
+
""",
|
| 53 |
+
output_parser=AnswerParser()
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Get Huggingface token
|
| 57 |
+
HF_TOKEN = os.getenv('HF_KEY')
|
| 58 |
+
|
| 59 |
+
# Initialize Prompt Node
|
| 60 |
+
prompt_node = PromptNode(
|
| 61 |
+
model_name_or_path="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 62 |
+
api_key=HF_TOKEN,
|
| 63 |
+
default_prompt_template=qa_template,
|
| 64 |
+
max_length=500,
|
| 65 |
+
model_kwargs={"model_max_length": 5000}
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Build Pipeline
|
| 69 |
+
rag_pipeline = Pipeline()
|
| 70 |
+
rag_pipeline.add_node(component=retriever, name="retriever", inputs=["Query"])
|
| 71 |
+
rag_pipeline.add_node(component=prompt_node, name="prompt_node", inputs=["retriever"])
|
| 72 |
+
|
| 73 |
+
# Streamlit Function for Handling Input and Displaying Output
|
| 74 |
+
def run_streamlit_app():
|
| 75 |
+
st.title("Mprofier - AI Assistant")
|
| 76 |
+
query_text = st.text_input("Enter your question:")
|
| 77 |
+
|
| 78 |
+
if st.button("Get Answer"):
|
| 79 |
+
response = rag_pipeline.run(query=query_text)
|
| 80 |
+
answer = response["answers"][0].answer if response["answers"] else "No answer found."
|
| 81 |
+
st.write(answer)
|
| 82 |
+
|
| 83 |
+
# Start the Streamlit application
|
| 84 |
+
if __name__ == "__main__":
|
| 85 |
+
run_streamlit_app()
|