File size: 7,435 Bytes
6d47efb
 
c01ee83
6d47efb
 
 
c12f762
6d47efb
 
 
 
 
 
 
 
 
 
c01ee83
6d47efb
 
 
 
 
 
 
 
 
c12f762
6d47efb
c12f762
 
 
 
 
 
6d47efb
c12f762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6f3e4f
c12f762
6d47efb
c12f762
6d47efb
 
c01ee83
6d47efb
 
 
c01ee83
6d47efb
 
 
 
c01ee83
6d47efb
 
 
 
 
 
 
c01ee83
6d47efb
 
 
 
 
 
c01ee83
6d47efb
 
 
 
 
 
 
c01ee83
6d47efb
 
c01ee83
6d47efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e55b32e
6d47efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e55b32e
6d47efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c6dac
 
 
 
6d47efb
 
e171f70
 
6d47efb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
### Google Docs API (Fetching Text) 

import os.path, json
from typing import List

from google.auth.transport.requests import Request
from google.oauth2 import service_account
from googleapiclient.discovery import build
from googleapiclient.errors import HttpError
from langchain.schema import Document


SCOPES = [
    "https://www.googleapis.com/auth/drive.readonly",
    "https://www.googleapis.com/auth/documents.readonly",
]

### Google Docs File IDs: 
INITIAL_FILEID = "1xWRgZ4c6BhBV97WniRY5vIWTyGlQSMljjXggKt3jfIY"
TECHNICAL_SEO_FILEID = "1HGt1K9AbFz1GwY6jzQiVGmqZwgP6zHPwDotGD1d8bHU" 
CONTENT_WRITING_FILEID = "1IdSXZwKeMo4su80s3sn4iSEQ18pvXDBsFW_uobj4zBQ"
CONTENT_MARKETING_FILEID = "11QfPGe2XY57RL764FoeN68lI1LvjOdwOM5pDaxyC3O8"
LOCAL_SEO_FILEID = "1uc4qH5roh6_xzv5x4osZG7nrPHpPUqRz9qPn31Y1azY"


creds = None

### Google Drive Authentication with Service Account(Google Cloud)
def auth_google_docs():
    service_account_info = json.loads(os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON"))
    creds =service_account.Credentials.from_service_account_info(
        service_account_info,
        scopes=SCOPES
    )
    return creds

### Previous Logic (Local Development)
# def auth_google_docs():
#     global creds
#     if DOCS_TOKEN:
#         try:
#             token_json = json.loads(DOCS_TOKEN)
#             creds = Credentials.from_authorized_user_file(token_json, SCOPES)
#         except Exception:
#             creds = None

#     if not creds or not creds.valid:
#         if creds and creds.expired and creds.refresh_token: 
#             creds.refresh(Request())
#         else: 
#             if DOCS_CREDENTIALS: 
#                 client_config_json = json.loads(DOCS_CREDENTIALS)
#                 flow = InstalledAppFlow.run_local_server(
#                     client_config_json, SCOPES, port=0
#                 )
                
#                 creds = flow.run_console()

#     return creds


def get_docs_text() -> List[Document]:
    creds = auth_google_docs()
    ### Build Google Docs Service
    service = build("docs", "v1", credentials=creds)
    
    doc_ids = [ 
        INITIAL_FILEID, TECHNICAL_SEO_FILEID, CONTENT_WRITING_FILEID,
        CONTENT_MARKETING_FILEID, LOCAL_SEO_FILEID
    ]
    
    docs = []
    
    for doc_id in doc_ids: 
        try: 
            doc = service.documents().get(documentId=doc_id).execute()
            title = doc["title"]
            elements = doc["body"]["content"]
    
            text = "" 
            for elem in elements: 
                if "paragraph" in elem: 
                    for run in elem["paragraph"]["elements"]:
                        if "textRun" in run: 
                            text += run["textRun"]["content"]
    
            ### Pydantic Document for each doc
            docs.append(
                Document(
                    page_content=text, 
                    metadata={"title": title, "id": doc_id}
                )
            )
    
        except Exception as e:
            print(f"{doc_id} not found: {e}")
    
        
    return docs


### Langchain LCEL (RAG) Implementation

from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_chroma import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain.schema import Document 
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain_core.output_parsers import StrOutputParser 
from langchain.schema.runnable import RunnablePassthrough

from dotenv import load_dotenv

OPENAI_MODEL_ID ="gpt-5-mini"
db_path = "vector_db"

load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")


def load_docs() -> List[Document]: 
    docs: List[Document] = get_docs_text() 
    return docs

# print("Number of Docs: ", len(load_docs()))


def split_text(): 
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=800, chunk_overlap=100, 
        separators=["\n\n", "\n", ". ", " ", ""]
    )
    return text_splitter.split_documents(load_docs())

### Sanity check: 
# chunks = split_text()
# print(f"Total Chunks: {len(chunks)}")

# for c in chunks[:10]: 
#     print(f"Meta: {c.metadata} | LENGTH: {len(c.page_content)}")


def vectorize_text(batch_size: int = 100):
    embeddings = OpenAIEmbeddings(api_key=OPENAI_API_KEY)
    all_docs: List[Document] = split_text()

    vector_store = None
    for i in range(0, len(all_docs), batch_size): 
        batch = all_docs[i:i+batch_size]
        if vector_store is None: 
            vector_store = Chroma.from_documents(
                documents=batch, 
                embedding=embeddings, 
                persist_directory=db_path
            )
        else: 
            vector_store.add_documents(batch)
    return vector_store

# print("Embedded Text: ", vectorize_text())


def get_prompt() -> ChatPromptTemplate: 
    
    system_template = """You are a top-tier SEO strategist helping with small business SEO. 
    You are best recommended to use the provided context(retrieved documents) for your responses 
    unless you need extra resources outside for more comprehensive or insightful advice.
    You should be concise and professional.
    
    Make sure to format headings and sub headings in bold and approppriate heading element for each in your markdown responses:
    example: heading and sub headings in **bold** and H2/H3/H4 in an appropriate format.
    
    Below is the context: 
    <context>
    {context}
    <context>
    """
    
    prompt = ChatPromptTemplate.from_messages([
        ("system", system_template),
        ('human', "{question}")
    ])

    return prompt


def chain_rag_elements(vector_store, prompt): 
    llm = ChatOpenAI(model=OPENAI_MODEL_ID, streaming=True)
    retriever = vector_store.as_retriever(search_kwargs={"k": 3})
    parser = StrOutputParser() 

    rag_chain = (
        {"context": retriever, "question": RunnablePassthrough()}
        | prompt 
        | llm
        | parser
    )
    
    return rag_chain


# query = "What is SEO?" 
# chain = chain_rag_elements()

# for chunk in chain.stream(query): 
    # print(chunk, end="", flush=True)



### Controller 
def build_rag_workflow(embeddings=OpenAIEmbeddings(api_key=OPENAI_API_KEY)): 
    ### Instantiate vector store that vectorizes text 
    ### from Google Docs(as the externa resource for RAG vector store)
    if os.path.exists(db_path) and os.listdir(path=db_path): 
        print("Loading existing vertor store...")
        vector_db = Chroma(
            persist_directory=db_path, 
            embedding_function=embeddings
        )
    else: 
         vector_db = vectorize_text()
    # print(vector_store._collection.count())

    ### Chain all necessary elements into the RAG chain
    template = get_prompt()
    rag_chain = chain_rag_elements(vector_db, template)

    return rag_chain


### UI (Gradio)
import gradio as gr


chain = build_rag_workflow()

def chat(query, history): 
    response = ""
    for chunk in chain.stream(query):
        response += chunk
        yield response


demo = gr.ChatInterface(
    fn=chat, type="messages", title="SEO Expert Bot", 
    description="SEO specialist chatbot, built in a RAG system using 1000 pages volume of SEO hack documents as an external data resource(vector db)"
                       )

if __name__ == "__main__":
    port = int(os.getenv("PORT", 7860))
    demo.launch(server_name="0.0.0.0", server_port=port)