testAI / app.py
MohsenParsa's picture
Update app.py
a0b3d34 verified
raw
history blame
5.17 kB
import os
from typing import List, Tuple
from langchain_community.llms import GPT4All
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import bs4
import textwrap
from langchain.chains import create_retrieval_chain
#from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.vectorstores import FAISS
#from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.embeddings import LlamaCppEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.callbacks import BaseCallbackHandler
from langchain_community.document_loaders import TextLoader
from google.colab import drive
drive.mount('/content/drive')
local_path = "/content/drive/MyDrive/Model/aya-23-8B-Q3_K_S.gguf" # "/content/drive/MyDrive/Dorna-Llama3-8B-Instruct.Q5_0.gguf" #
model_path = "/content/drive/MyDrive/Model/labse.Q3_K_S.gguf" # "/content/drive/MyDrive/labse.Q6_K.gguf" #
text_path = "/content/drive/MyDrive/gpt4all/docs/Books/chmn.txt"
index_path = "/content/drive/MyDrive/gpt4all/index_CHEHEL_MAJLESE_NOOR"
def initialize_embeddings() -> LlamaCppEmbeddings:
return LlamaCppEmbeddings(model_path=model_path)
def load_documents() -> List:
loader = TextLoader(text_path)
return loader.load()
def split_chunks(sources: List) -> List:
chunks = []
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
for chunk in splitter.split_documents(sources):
chunks.append(chunk)
return chunks
def generate_index(chunks: List, embeddings: LlamaCppEmbeddings) -> FAISS:
texts = [doc.page_content for doc in chunks]
metadatas = [doc.metadata for doc in chunks]
return FAISS.from_texts(texts, embeddings, metadatas=metadatas)
class MyCustomHandler(BaseCallbackHandler):
def on_llm_new_token(self, token: str, **kwargs) -> None:
print(token),
llm = GPT4All( model=local_path, n_threads=150, streaming=True,verbose=False)#,device='cuda:Tesla T4') #
# callbacks=[MyCustomHandler()],
# # 1. Load, chunk and index the contents of the blog to create a retriever.
# loader = WebBaseLoader(
# web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
# bs_kwargs=dict(
# parse_only=bs4.SoupStrainer(
# class_=("post-content", "post-title", "post-header")
# )
# ),
# )
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
#docs = loader.load()
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
#splits = text_splitter.split_documents(docs)
#vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
#retriever = vectorstore.as_retriever() ########## attention
embeddings = initialize_embeddings()
rebuilIndex = input('Rebuild Index (y/n)?')
if rebuilIndex=='y':
#start = time.time()
sources = load_documents()
chunks = split_chunks(sources)
vectorstore = generate_index(chunks, embeddings)
vectorstore.save_local(index_path)
#end = time.time()
#elapsed = end - start
#print('Elapsed time to build index: ' + str(elapsed))
index = FAISS.load_local(index_path, embeddings,allow_dangerous_deserialization=True)
retriver = index.as_retriever()
# 2. Incorporate the retriever into a question-answering chain.
system_prompt = (
"""You are an assistant for question-answering tasks. "
"Only use the {context} to answer: "
"لطفاً فقط به زبان فارسی صحبت کن و تمام پاسخ ها را به زبان فارسی بنویس "
"لطفا پاسخ هایت طولانی باشد "
"اگر پاسخ سوال را نیافتی بگو نمیدانم"
"\n\n"""
)
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{input}"),
]
)
##question_answer_chain = create_stuff_documents_chain(llm, prompt)
##rag_chain = create_retrieval_chain(retriver , question_answer_chain) # retriever
#result = rag_chain.invoke({"input": "What is Task Decomposition?"})
# second edit
rag_chain_from_docs = (
{
"input": lambda x: x["input"], # input query
"context": lambda x: format_docs(x["context"]), # context
}
| prompt # format query and context into prompt
| llm # generate response
| StrOutputParser() # coerce to string
)
# Pass input query to retriever
retrieve_docs = (lambda x: x["input"]) | retriver
# Below, we chain `.assign` calls. This takes a dict and successively
# adds keys-- "context" and "answer"-- where the value for each key
# is determined by a Runnable. The Runnable operates on all existing
# keys in the dict.
chain = RunnablePassthrough.assign(context=retrieve_docs).assign(
answer=rag_chain_from_docs
)
chat_history = []
while True:
query = input("پرسش تان را بپرسید. حقیر در خدمتم: ")
if query.lower() == 'exit':
break
response = chain.invoke({"input": query})
print(textwrap.fill(response['answer'],80))