Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from sklearn.impute import SimpleImputer
|
| 4 |
+
from sklearn.preprocessing import LabelEncoder
|
| 5 |
+
from sklearn.preprocessing import StandardScaler
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 8 |
+
from sklearn.metrics import accuracy_score
|
| 9 |
+
import gradio as gr
|
| 10 |
+
def rainPrediction(fileCSVName):
|
| 11 |
+
#Importing necessary libraries
|
| 12 |
+
#Storing the values from the dataset in a variable
|
| 13 |
+
if fileCSVName == "weatherAUS.csv":
|
| 14 |
+
dataset = pd.read_csv("/weatherAUS.csv")
|
| 15 |
+
#D
|
| 16 |
+
X = dataset.iloc[:,[1,2,3,4,7,8,9,10,11,12,13,14,15,16,18,19,20,21]].values
|
| 17 |
+
Y = dataset.iloc[:,-1].values
|
| 18 |
+
|
| 19 |
+
#Reshaping Y from a 1-dimensional(a[n]) array into a 2-dimensional(a[n][m]) array
|
| 20 |
+
Y = Y.reshape(-1,1)
|
| 21 |
+
|
| 22 |
+
#Removing NA from the dataset and replacing it with the most frequent value in that column
|
| 23 |
+
|
| 24 |
+
imputer = SimpleImputer(missing_values=np.nan,strategy='most_frequent')
|
| 25 |
+
X = imputer.fit_transform(X)
|
| 26 |
+
Y = imputer.fit_transform(Y)
|
| 27 |
+
|
| 28 |
+
#Encoding non-numerical(i.e: W,WNW) values into numerical values(i.e: 1,2,3,4)
|
| 29 |
+
|
| 30 |
+
le1 = LabelEncoder()
|
| 31 |
+
X[:,0] = le1.fit_transform(X[:,0])
|
| 32 |
+
le2 = LabelEncoder()
|
| 33 |
+
X[:,4] = le2.fit_transform(X[:,4])
|
| 34 |
+
le3 = LabelEncoder()
|
| 35 |
+
X[:,6] = le3.fit_transform(X[:,6])
|
| 36 |
+
le4 = LabelEncoder()
|
| 37 |
+
X[:,7] = le4.fit_transform(X[:,7])
|
| 38 |
+
le5 = LabelEncoder()
|
| 39 |
+
X[:,-1] = le5.fit_transform(X[:,-1])
|
| 40 |
+
le6 = LabelEncoder()
|
| 41 |
+
Y = le6.fit_transform(Y)
|
| 42 |
+
|
| 43 |
+
#Feature scaling to minimize data scattering
|
| 44 |
+
|
| 45 |
+
sc = StandardScaler()
|
| 46 |
+
X = sc.fit_transform(X)
|
| 47 |
+
|
| 48 |
+
#Dividing the dataset into 2 parts namely training data and testing data
|
| 49 |
+
|
| 50 |
+
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=0)
|
| 51 |
+
|
| 52 |
+
#Training our model
|
| 53 |
+
|
| 54 |
+
classifier = RandomForestClassifier(n_estimators=100,random_state=0)
|
| 55 |
+
classifier.fit(X_train,Y_train)
|
| 56 |
+
classifier.score(X_train,Y_train)
|
| 57 |
+
Y_test = Y_test.reshape(-1,1)
|
| 58 |
+
Y_pred = classifier.predict(X_test)
|
| 59 |
+
Y_pred = le6.inverse_transform(Y_pred)
|
| 60 |
+
Y_test = le6.inverse_transform(Y_test)
|
| 61 |
+
Y_test = Y_test.reshape(-1,1)
|
| 62 |
+
Y_pred = Y_pred.reshape(-1,1)
|
| 63 |
+
|
| 64 |
+
#Concatenating our test and prediction result into a dataset
|
| 65 |
+
df = np.concatenate((Y_test,Y_pred),axis=1)
|
| 66 |
+
dataframe = pd.DataFrame(df,columns=['Rain Tomorrow','Rain Prediction'])
|
| 67 |
+
|
| 68 |
+
#Checking the accuracy
|
| 69 |
+
|
| 70 |
+
print(accuracy_score(Y_test,Y_pred))
|
| 71 |
+
|
| 72 |
+
#Print .csv file
|
| 73 |
+
#answer = dataframe.to_csv("predictions.csv")
|
| 74 |
+
|
| 75 |
+
# return pd.read_csv("predictions.csv")
|
| 76 |
+
return dataframe
|
| 77 |
+
|
| 78 |
+
app = gr.Interface(rainPrediction, "text", gr.outputs.Dataframe(headers=["Rain Tomorrow", "Rain Prediction"],label="All data"))
|
| 79 |
+
app.launch(debug=True)
|