File size: 16,279 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
805565c
8c404cd
 
 
 
 
c3883ac
10e9b7d
c18222e
 
 
dc7161f
 
c18222e
dc7161f
c18222e
 
d59f015
e80aab9
3db6293
e80aab9
c3883ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
d59f015
31243f4
805565c
3f3d022
 
29d3268
120ba11
805565c
 
 
29d3268
805565c
 
a124146
c3883ac
 
 
 
a124146
 
 
8c404cd
 
c3883ac
 
575cfd2
9e64dea
 
 
8c404cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56285c6
31243f4
8c404cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd743df
 
 
8c404cd
c9bbdfd
 
 
 
d0eae74
4f362b5
c9bbdfd
d0eae74
c9bbdfd
 
17a78a9
 
 
c9bbdfd
 
 
4021bf3
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
c18222e
 
dc7161f
c18222e
 
dc7161f
 
c18222e
 
b177367
31243f4
 
 
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
c18222e
 
 
 
31243f4
 
 
 
7d65c66
9e64dea
 
 
 
 
7d65c66
c18222e
 
 
7d65c66
31243f4
 
7d65c66
c18222e
 
 
31243f4
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
c18222e
 
 
dc7161f
c18222e
31243f4
 
 
e80aab9
c18222e
 
dc7161f
c18222e
e80aab9
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from transformers import pipeline
from urllib.parse import quote_plus
import re
from typing import List, Dict, Any
from pptx import Presentation
from PyPDF2 import PdfReader
import openai

#to delete futher
current_question = ""
current_answer = ""
current_context = ""

def get_status():
    return current_question, current_answer, current_context


# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# Alternative text-generation function using OpenAI GPT-4o
def openai_gpt4o_generator(prompt: str, max_new_tokens: int = 128):
    """Generate text using OpenAI GPT-4o via the API."""
    api_key = os.getenv("OPENAI_API_KEY")
    if not api_key:
        raise ValueError("OPENAI_API_KEY environment variable is not set")
    client = openai.OpenAI(api_key=api_key)
    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[{"role": "user", "content": prompt}],
        max_tokens=max_new_tokens,
    )
    text = response.choices[0].message.content
    return [{"generated_text": text}]



# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
    SYSTEM_PROMPT = (
        "You are a general AI assistant. I will ask you a question."
        "Report your thoughts, and finish your final answer with the following template: "
        "FINAL ANSWER: {Answer}" 
        "YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. "
        "If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. "
        "If you are asked for a string, don't use articles, neither abbreviations, and write the digits in plain text unless specified otherwise. "
        "If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
        "Always end your output exactly with FINAL ANSWER: <Answer> and do not add any text after that."
    )
    
    #def __init__(self, model_name="mistralai/Mistral-7B-Instruct-v0.3"):  
    #    token = os.getenv("HF_API_TOKEN")
    #    self.generator = pipeline("text-generation", model=model_name, token=token)
    #    self.memory: List[str] = []
    
    def __init__(self):
        """Инициализация агента, использующего только OpenAI GPT-4o."""
        self.generator = openai_gpt4o_generator
        self.memory: List[str] = []

    
    
    def get_context(self) -> str:
        """Return the agent's current reasoning context."""
        return "\n".join(self.memory)

    def _plan(self, question: str) -> List[Dict[str, Any]]:
        """Create a simple plan consisting of tool steps."""
        steps: List[Dict[str, Any]] = []

        file_match = re.search(r"(\S+\.(?:pdf|xlsx|csv|pptx|txt))", question, re.IGNORECASE)
        if file_match:
            steps.append({"tool": "file", "path": file_match.group(1)})
            return steps

        expr_match = re.search(r"[\d\s\+\-\*/\.\(\)]+", question)
        has_op = any(op in question for op in ["+", "-", "*", "/"])

        if expr_match and has_op:
            expression = expr_match.group(0)
            # if the question also implies web lookup, gather info first
            if re.search(r"\b(search|lookup|population|when|who|what)\b", question.lower()):
                steps.append({"tool": "web", "query": question})
            steps.append({"tool": "calculator", "expression": expression})
            return steps

        # default to web search
        steps.append({"tool": "web", "query": question})
        return steps

    def _web_search(self, query: str) -> str:
        url = f"https://r.jina.ai/https://duckduckgo.com/html/?q={quote_plus(query)}"
        try:
            resp = requests.get(url, timeout=10)
            text = resp.text
            for line in text.splitlines():
                if line.startswith("[") and "](" in line:
                    return line
            return "No result found"
        except Exception as e:
            return f"web search error: {e}"

    def _execute_calculator(self, expression: str) -> str:
        try:
            result = eval(expression, {"__builtins__": {}}, {})
            return str(result)
        except Exception as e:
            return f"calc error: {e}"

    def _load_file(self, path: str) -> str:
        try:
            ext = os.path.splitext(path)[1].lower()
            if ext == ".pdf":
                reader = PdfReader(path)
                return "\n".join(page.extract_text() for page in reader.pages[:3])
            if ext in {".xlsx", ".xls"}:
                df = pd.read_excel(path)
                return df.to_csv(index=False)
            if ext == ".csv":
                df = pd.read_csv(path)
                return df.to_csv(index=False)
            if ext == ".pptx":
                prs = Presentation(path)
                texts = []
                for slide in prs.slides:
                    for shape in slide.shapes:
                        if hasattr(shape, "text"):
                            texts.append(shape.text)
                return "\n".join(texts)
            if ext == ".txt":
                with open(path, "r", encoding="utf-8") as f:
                    return f.read()
        except Exception as e:
            return f"file load error: {e}"
        return "unsupported file"

    def __call__(self, question: str) -> str:

        self.memory.clear()
        self.memory.append(f"Question: {question}")
        plan = self._plan(question)
        self.memory.append(f"Plan: {plan}")

        for step in plan:
            action = step.get("tool")
            self.memory.append(f"Act: {action} -> {step}")
            if action == "calculator":
                observation = self._execute_calculator(step["expression"])
            elif action == "file":
                observation = self._load_file(step["path"])
            else:
                observation = self._web_search(step["query"])
            self.memory.append(f"Observation: {observation}")

        context = "\n".join(self.memory)
        #prompt = f"{self.SYSTEM_PROMPT}\n{context}\nQuestion: {question}\nAnswer:"
        prompt = f"{self.SYSTEM_PROMPT}\nQuestion: {question}\nAnswer:"
        
        
        try:
            outputs = self.generator(prompt, max_new_tokens=128)
        except Exception as e:
            raise RuntimeError(f"generation failed: {e}") from e

        if outputs and isinstance(outputs, list):
            generated_text = outputs[0].get("generated_text", "")
        else:
            generated_text = str(outputs)

        if generated_text.startswith(prompt):
            generated_text = generated_text[len(prompt):].lstrip()

        if "FINAL ANSWER:" in generated_text:
            return generated_text.split("FINAL ANSWER:", 1)[1].strip()
        return generated_text.strip()

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"
    
    #delete
    global current_question, current_answer, current_context
    current_question = ""
    current_answer = ""
    current_context = ""
    
    #delete
    
    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        #del
        current_question = question_text
        current_answer = ""
        #del
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            
            question_context = agent.get_context()
            if current_context:
                current_context += "\n\n"
            current_context += f"Question {task_id}: {question_text}\n{question_context}"
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            #del
            current_answer = submitted_answer
            #del
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
             #del
             current_answer = f"AGENT ERROR: {e}"
             #del
    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    #del
    current_question_box = gr.Textbox(label="Current Question")
    current_answer_box = gr.Textbox(label="Current Answer")
    context_box = gr.Textbox(label="Current Context")
    #del
    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )
    #del
    status_timer = gr.Timer(1.0)
    status_timer.tick(fn=get_status, outputs=[current_question_box, current_answer_box, context_box])
    #del
if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)