VyvoTTS-LFM2 / app.py
6Morpheus6's picture
clear cache
39092ef verified
raw
history blame
11.6 kB
import gc
import spaces
from snac import SNAC
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
# Available models - LFM2 models
MODELS = {
"Jenny": "Vyvo/VyvoTTS-LFM2-350M-Jenny",
"Optimus Prime": "Vyvo/VyvoTTS-LFM2-Optimus-Prime",
"Itto": "Vyvo/VyvoTTS-LFM2-Itto",
"Stephen_Fry": "Vyvo/VyvoTTS-LFM2-Stephen_Fry",
"Alhaitham": "Vyvo/VyvoTTS-LFM2-Alhaitham",
"Cyno": "Vyvo/VyvoTTS-LFM2-Cyno",
"Dehya": "Vyvo/VyvoTTS-LFM2-Dehya",
"Kaeya": "Vyvo/VyvoTTS-LFM2-Kaeya",
"Kaveh": "Vyvo/VyvoTTS-LFM2-Kaveh",
"Neuvillette": "Vyvo/VyvoTTS-LFM2-Neuvillette",
"Ningguang": "Vyvo/VyvoTTS-LFM2-Ningguang",
"Heizou": "Vyvo/VyvoTTS-LFM2-Heizou",
"Thoma": "Vyvo/VyvoTTS-LFM2-Thoma",
"Tighnari": "Vyvo/VyvoTTS-LFM2-Tighnari",
}
# Store for currently loaded model
current_model = None
current_tokenizer = None
current_model_choice = None
def load_model_if_needed(model_choice):
"""Load model and tokenizer, unloading previous model if different"""
global current_model, current_tokenizer, current_model_choice
if current_model_choice != model_choice:
# Unload previous model if exists
if current_model is not None:
print(f"Unloading previous model: {current_model_choice}")
del current_model
del current_tokenizer
torch.cuda.empty_cache() if torch.cuda.is_available() else None
# Load new model
model_name = MODELS[model_choice]
print(f"Loading {model_choice} model: {model_name}")
current_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
current_model.to(device)
current_tokenizer = AutoTokenizer.from_pretrained(model_name)
current_model_choice = model_choice
print(f"{model_choice} model loaded successfully!")
return current_model, current_tokenizer
# LFM2 Special Tokens Configuration
TOKENIZER_LENGTH = 64400
START_OF_TEXT = 1
END_OF_TEXT = 7
START_OF_SPEECH = TOKENIZER_LENGTH + 1
END_OF_SPEECH = TOKENIZER_LENGTH + 2
START_OF_HUMAN = TOKENIZER_LENGTH + 3
END_OF_HUMAN = TOKENIZER_LENGTH + 4
START_OF_AI = TOKENIZER_LENGTH + 5
END_OF_AI = TOKENIZER_LENGTH + 6
PAD_TOKEN = TOKENIZER_LENGTH + 7
AUDIO_TOKENS_START = TOKENIZER_LENGTH + 10
# Process text prompt for LFM2
def process_prompt(prompt, tokenizer, device):
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[START_OF_HUMAN]], dtype=torch.int64)
end_tokens = torch.tensor([[END_OF_TEXT, END_OF_HUMAN]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
# No padding needed for single input
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
# Parse output tokens to audio for LFM2
def parse_output(generated_ids):
token_to_find = START_OF_SPEECH
token_to_remove = END_OF_SPEECH
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - AUDIO_TOKENS_START for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0] # Return just the first one for single sample
# Redistribute codes for audio generation
def redistribute_codes(code_list, snac_model):
device = next(snac_model.parameters()).device # Get the device of SNAC model
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
# Move tensors to the same device as the SNAC model
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
# Main generation function
@spaces.GPU()
def generate_speech(text, model_choice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
if not text.strip():
return None
try:
progress(0.1, "πŸ”„ Loading model and processing text...")
model, tokenizer = load_model_if_needed(model_choice)
# Voice parameter is always None for LFM2 models
input_ids, attention_mask = process_prompt(text, tokenizer, device)
progress(0.3, "🎡 Generating speech tokens...")
with torch.no_grad():
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=END_OF_SPEECH,
)
progress(0.6, "πŸ”§ Processing speech tokens...")
code_list = parse_output(generated_ids)
progress(0.8, "🎧 Converting to audio...")
audio_samples = redistribute_codes(code_list, snac_model)
progress(1.0, "βœ… Completed!")
gc.collect()
torch.cuda.empty_cache()
return (24000, audio_samples)
except Exception as e:
print(f"Error generating speech: {e}")
return None
# Example texts
EXAMPLE_TEXTS = [
"Hello! I am a speech system. I can read your text with a natural voice.",
"Today is a beautiful day. The weather is perfect for a walk.",
"The sun rises from the east and sets in the west. This is a rule of nature.",
"Technology makes our lives easier every day."
]
# Create modern Gradio interface using built-in theme
with gr.Blocks(title="🎡 Modern Text-to-Speech", theme=gr.themes.Soft(), css="""
.gradio-textbox textarea { background-color: #6b7280 !important; color: white !important; }
.gradio-audio { background-color: #6b7280 !important; }
""") as demo:
# Header section
gr.Markdown("""
# 🎡 VyvoTTS
### πŸ”— [Github](https://github.com/Vyvo-Labs/VyvoTTS) | πŸ€— [HF Model](https://huggingface.co/collections/Vyvo/lfm2-tts-689eedae5353ff5b048efd55)
""")
gr.Markdown("""
VyvoTTS is a text-to-speech model by Vyvo team using LFM2 architecture, trained on multiple diverse open-source datasets.
Since some datasets may contain transcription errors or quality issues, output quality can vary.
Higher quality datasets typically produce better speech synthesis results.
**Roadmap:**
- [ ] Transformers.js support
- [ ] Pretrained model release
- [ ] vLLM support
- [x] Training and inference code release
""")
with gr.Row():
with gr.Column(scale=2):
# Text input section
text_input = gr.Textbox(
label="πŸ“ Text Input",
placeholder="Enter the text you want to convert to speech...",
lines=6,
max_lines=10
)
# Voice model selection (hidden since only Jenny is available)
model_choice = gr.Radio(
choices=list(MODELS.keys()),
value="Jenny",
label="🎀 Voice Model",
visible=True # Hide since only one option
)
# Advanced settings
with gr.Accordion("βš™οΈ Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.1, maximum=1.5, value=0.3, step=0.05,
label="🌑️ Temperature",
info="Higher values create more expressive but less stable speech"
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
label="🎯 Top P",
info="Nucleus sampling threshold value"
)
repetition_penalty = gr.Slider(
minimum=1.0, maximum=2.0, value=1.2, step=0.05,
label="πŸ”„ Repetition Penalty",
info="Higher values discourage repetitive patterns"
)
max_new_tokens = gr.Slider(
minimum=100, maximum=2000, value=2000, step=100,
label="πŸ“ Maximum Length",
info="Maximum length of generated audio (in tokens)"
)
# Action buttons
with gr.Row():
submit_btn = gr.Button("🎡 Generate Speech", variant="primary", size="lg")
clear_btn = gr.Button("πŸ—‘οΈ Clear", size="lg")
with gr.Column(scale=1):
# Output section
audio_output = gr.Audio(
label="🎧 Generated Audio",
type="numpy",
interactive=False
)
# Example texts at the bottom
with gr.Row():
example_1_btn = gr.Button(
EXAMPLE_TEXTS[0],
size="sm",
elem_classes="example-button"
)
example_2_btn = gr.Button(
EXAMPLE_TEXTS[1],
size="sm",
elem_classes="example-button"
)
with gr.Row():
example_3_btn = gr.Button(
EXAMPLE_TEXTS[2],
size="sm",
elem_classes="example-button"
)
example_4_btn = gr.Button(
EXAMPLE_TEXTS[3],
size="sm",
elem_classes="example-button"
)
# Set up example button events
example_1_btn.click(fn=lambda: EXAMPLE_TEXTS[0], outputs=text_input)
example_2_btn.click(fn=lambda: EXAMPLE_TEXTS[1], outputs=text_input)
example_3_btn.click(fn=lambda: EXAMPLE_TEXTS[2], outputs=text_input)
example_4_btn.click(fn=lambda: EXAMPLE_TEXTS[3], outputs=text_input)
# Set up event handlers
submit_btn.click(
fn=generate_speech,
inputs=[text_input, model_choice, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output,
show_progress=True
)
def clear_interface():
return "", None
clear_btn.click(
fn=clear_interface,
inputs=[],
outputs=[text_input, audio_output]
)
# Launch the app
if __name__ == "__main__":
demo.queue().launch(share=False, ssr_mode=False)